Download Math 115 Practice Test rubrics - Los Angeles Southwest College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Los Angeles Southwest College
Mathematics Department
Math 115 – Common Final Exam
Practice TEST (rubrics)
This Final Exam consists of 36 problems with a total of 150 points. Show any necessary work neatly
and clearly in the space provided. Please circle or box your final answer.
Part A: No partial credit will be given to the problems 1 through 10
2
1
Simplify: 26  (37)  13
2
Decide whether the statement is true or false:  | 29 |  | 18 | True
For the following word phrase write an expression using x as the variable and simplify.
3
(2 pts)
"Thirty two subtracted from the difference between twice a number and twelve "
(2 pts)
(2 pts)
2 x  44
4
Evaluate: 4 x 2 y  5 xy 2 , if x  3 and y  2
5
6
Combine like terms: 5m 2  8m  3m 2  12m  15
Graph 2  x  3 on a number line.
7
Find the slope of the line through (2, 6) and ( 4, 2) and write answer in the simplest form
132
2m 2  4m  15
(2 pts)
(2 pts)
(2 pts)
(2 pts)
4
8
Multiply: 2 y 2 (4 y 3  3 y 2  7)
8 y 5  6 y 4  14 y 2
(2 pts)
9
Factor: 9 y 2  64
(3 y  8)(3 y  8)
(2 pts)
10
Find the LCM of 18 x 4 y 3 and 24 x5 y 2
72 x 5 y 3 or 23  32 x 5 y 3
(2 pts)
Part B: Partial credit may be given to the problems 11 through 36. Answers without supporting
work will be given no credit. Please circle or box your final answer.
11
Simplify:
(4)  32  2  7
(3)  6  13
(3 pts)
a) 32  9
1pt
b)  4  9  36 


(3)  6  18
36  14 50

 10
18  13
5
2  7  14
c)
12
13
1pt
1pt
Solve the equation: 3( x  4)  5( x  2)  14
(4 pts)
3x 12  5x 10  14
2x  22  14
2 x  8
1pt
1pt
1pt
2 x 8

2 2
1pt
x  4
Solve the following word problem by drawing a picture, defining the variable(s),
setting up the equation(s), and then solve. Don’t forget to include units.
The length of a rectangle is three more than twice the width.
If the perimeter is 78 inches, find the width and the length.
2l  2w  P


l  2w  3

2(2w  3)  2 w  78

6 w  6  78

6 w  72


w  12 inches 
l  2(12)  3  27 inches
3 pts
2 pt
1pt
2
(6 pts)
14
Subtract: (6 x3  4 x 2  11x  8)  (5 x3  2 x 2  8 x  17)
6 x3  4 x 2  11x  8  5 x3  2 x 2  8 x  17
1pt
6 x  5 x  4 x  2 x  11x  8 x  8  17
1pt
x3  6 x 2  3x  9
1pt
3
15
3
2
2
Solve the formula A  p  prt for t.
(3 pts)
A  p  prt
A  p prt

pr
pr
1pt
1pt
A p
 t or
pr
16
(3 pts)
A 1
 t
pr r
1pt
Write the equation of the line passing through the point ( 3, 4) and having slope  5 . Give
(4 pts)
the final answer in the slope - intercept form.
y  y1  m( x  x1 )
y  mx  b


 or

4  (5)(3)  b 
y  4  (5)[ x  (3)]
y  4  (5)( x  3) 

y  4  5 x  15 
y  5x  11
17
or
4  15  b 

b  11 
2 pts
1pt
1pt
Write the equation of the line passing through the pair of points (2, 7) and ( 4,5) . Give the
final answer in the slope - intercept form.
m
y2  y1
x2  x1
m
5  (7)
4  2
m
12
6
m  2
y  y1  m( x  x1 )
y  mx  b


 or

7  (2)2  b 
y  (7)  (2)( x  2) 
y  7  (2)( x  2) 
7  4  b 
or


y  7  2 x  4 
b  3

y  2 x  3
3
1pt
2 pts
1pt
1pt
(5 pts)
18
Graph the linear inequality 3 x  2 y  6
x0
y  3
2 pt
(8 pts)
y0
x2
2 pt
choose the broken line
graph the line
2 pt
The test point (0, 0), 0  6 is a true, shade a right region
19
(a)Solve the linear inequality, (b) graph the solution, and (c) write the solution set as interval
notation: 7( x  1)  2( x  4)  0
7 x  7  2x  8  0
5x 15  0
1pt
1pt
5 x  15
1pt
1pt
x3
(,3]
20
1pt
1pt
1pt
2 x  5 y  16
3 x  4 y  17
(4 pts)
Solve the system of equations: 
(2 x  5 y  16)  (3)

(3x  4 y  17)  2
6 x  15 y  48

6 x  8 y  34
7
14
7 y  14
y
7
7
2 x  5(2)  16 

2 x  10  16 

2x  6 x  3 
(5 pts)
1pt
1pt
y  2
1pt
1pt
4
21
Simplify and write the answer using only positive exponents:
for
for
for
for
canceling 27 with 63 by 9
dividing x5 by x4
dividing y7 by y6
moving x9 to denominator as x9
27 x 5 y 7
63x 4 y 6
(4 pts)
1pt
1pt
1pt
1pt
3 y13
7 x9
22
Multiply: (2 y  3)(2 y 3  4 y 2  2 y  3)
4 y 4  8 y 3  4 y 2  6 y  6 y 3  12 y 2  6 y  9
2 pts
4 y  8 y  6 y  4 y  12 y  6 y  6 y  9
2 pts
4 y 4  14 y 3  16 y 2  12 y  9
1pt
4
23
24
(5 pts)
3
3
2
2
Perform the indicated operation: (2 x  3 y )2
(3 pts)
(2 x  3 y )(2 x  3 y )
1pt
4 x 2  6 xy  6 xy  9 y 2
1pt
4 x 2  12 xy  9 y 2
1pt
6 x 2  13x  3
Use the long division to perform the division:
x 3
2 pts 2 pts
5
6x
x  3 6 x  13 x  3
2
 6 x 2  18 x
5x  3
 5 x  15
12
2 pts
5
(6 pts)
25
The product of the second and third of three consecutive integers is 2 more than 10 times the
first integer. Find the integers.
( x  1)( x  2)  10 x  2
3 pts
x 2  3x  2  10 x  2
1pt
x2  7 x  0
1pt
x( x  7)  0
x0
x7
1pt
1pt
{0,1, 2} or {7,8,9)
26
Solve by factoring: 3 y 2  10 y  8
(5 pts)



2
3 y  12 y  2 y  8  0 

3 y ( y  4)  2( y  4)  0
( y  4)(3 y  2)  0
3 y 2  10 y  8  0
y40
3y  2  0
27
(7 pts)
2 pts
1pt
1pt
y4 

2
y 
3
1pt
x 2  2 x  24
x 2  x  12
x 2  2 x  24  ( x  6)( x  4)
1.5 pts
x  x  12  ( x  3)( x  4)
1.5 pts
( x  6)( x  4) ( x  6)

( x  3)( x  4) ( x  3)
1pt
(4 pts)
Simplify into lowest terms:
2
6
28
x 2  5 x  6 x 2  x  20
Multiply and simplify: 2

x  3x  28 x 2  2 x  15
x 2  5 x  6  ( x  2)( x  3)
(7 pts)
1.5 pts
x 2  x  20  ( x  5)( x  4)
1.5 pts
x  3x  28  ( x  7)( x  4)
1.5 pts
x 2  2 x  15  ( x  5)( x  3)
1.5 pts
( x  2)( x  3) ( x  5)( x  4) ( x  2)


( x  7)( x  4) ( x  5)( x  3) ( x  7)
1pt
2
29
Subtract. Write answer in lowest terms:
(6 pts)
3
9
 2
x2 x x2
( x  1)3
9
LCD  ( x  1)( x  2) 1pt

( x  2)( x  1) ( x  2)( x  1)
3x  3
9

( x  2)( x  1) ( x  2)( x  1)
3x  3  9
3x  6
1pt
( x  2)( x  1)
( x  2)( x  1)
3( x  2)
( x  2)( x  1)
30
3
( x  1)
Solve and check for any extraneous solution:
1pt
x
2
18


LCD  ( x  5)( x  4)
x  5 x  4 ( x  5)( x  4)
 x

2
18
 x  5  x  4  ( x  5)( x  4)  ( x  5)( x  4)


x( x  4)  2( x  5)  18
x 2  4 x  2 x  10  18


2
x  2x  8  0


( x  4)( x  2)  0
x4
N /S
(8 pts)
x
2
18

 2
x  5 x  4 x  x  20
3 pts
1pt
1pt
1pt
1pt
x  2
1pt
7
31
32
Nancy Johnson invested $18,000. Part of it was invested at 3% annual simple
interest, and the rest was invested at 4%. Her interest income for the first year was
$630. How much did she invest at each rate?
 x  y  18000
3 pts

0.03 x  0.04 y  630
 x  y  18000
( x  y  18000)(3) 3x  3 y  54000



3x  4 y  63000 3x  4 y  63000
3 x  4 y  63000
y  9000
1pt
x  9000  18000
1pt
Multiply and simplify:
x  9000
2 pts
(4 pts)
3x3 y  27 xy 3
3x3 y  27 xy3
33
1pt
81x4 y 4
1pt
92 ( x 2 ) 2 ( y 2 ) 2  9 x 2 y 2
2 pts
Solve: x 2  21  3
x  18 or
2
(4 pts)
x  18  0
2
1pt
x 2   18 or ( x  18)( x  18)  0
1pt
x  3 2
34
2 pts
Solve and check each potential solution:

x7

2
(7 pts)
x7  4
 (4)2
x  7  16
97  4
(4 pts)
2 pts
x9
1pt
94
1pt
8
35
Use the quadratic formula to solve: x 2  4 x  2  0
b  b2  4ac
x
2a
a  1 b  4 c  2
(4)  (4) 2  4  1  2
x
2 1
2(2  2)
x
x  2 2
2
36
(5 pts)
x
2 pts
4 8
2
2 pts
1pt
(a) Find the x -intercept = (3, 0) ,(b) and the y –intercept = (0, 4) of the equation
4 x  3 y  12 .
x0
(c) Graph the equation using the intercepts.
y  4
y0
2 pts
x3
2 pts
2 pts
9
(6 pts)
Related documents