Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Practice Test #1: These are practice problems to help for the test. This all of the quizzes and homework and the book should be reviewed for the test._ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the equation. 1) 2(x + 7) = (2x + 14) 1) 2) (y - 4) - (y + 3) = 8y 2) 3) 4(y + 8) = 5(y - 5) 3) 4) 2x x - =5 5 3 4) 5) b - 6 = -2 17 5) 6) 6x -7x + 6 5 + =7 7 7 6) Decide whether the equation is conditional, an identity, or a contradiction. Give the solution set. 7) 5(4g + 3) - 20g - 15 = 0 7) 8) 20k + 42 = 5(4k + 8) 8) 9) 4(24t + 12) = 16(4t + 5) 9) Use the variable x for the unknown. Write an equation representing the verbal sentence and solve the problem. 10) If 5 times a number is added to -8, the result is equal to 13 times the number. 10) 11) When 1 of a number is added to 24, the result is 37. 4 Solve the problem. 12) A biologist collected 298 fern and moss samples. There were 102 fewer ferns than moss samples. How many fern samples did the biologist collect? 11) 12) 13) In a local election, 47,600 people voted. This was an increase of 13% over the last election. How many people voted in the last election? 13) 14) It is necessary to have a 40% antifreeze solution in the radiator of a certain car. The radiator now has 20 liters of 20% solution. How many liters of this should be drained and replaced with 100% antifreeze to get the desired strength? 14) 1 Solve the investment problem. 15) Roberto invested some money at 8%, and then invested $2000 more than twice this amount at 12%. His total annual income from the two investments was $4720. How much was invested at 12%? 16) How many liters of a 30% alcohol solution must be mixed with 20 liters of a 70% solution to get a 40% solution? Solve the inequality, giving its solution set in both interval and graph forms. 17) -9x ≤ 90 15) 16) 17) 18) 8 + 4x + 8 ≥ 3x + 18 18) 19) -2(5z + 4) < -12z + 2 19) 20) -30 ≤ 5(x - 1) ≤ 5 20) -6 -4 -2 0 2 4 6 8 10 12 14 21) -10 < 3x + 2 ≤ 2 21) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 22) 6 ≤ 3x - 1 ≤9 2 22) Let A = {q, s, u, v, w, x, y, z}, B = {q, s, y, z}, C = {v, w, x, y, z}, and D = {s}. List the elements in the following set. 23) C ∪ B 23) 24) B ∩ C 24) 25) C ∩ D 25) 2 For the compound inequality, give the solution set in both interval and graph forms. 26) x ≤ -2 and x ≥ 7 27) 5x + 1 ≥ 11 and 5x + 1 ≤ 31 -7 -6 -5 -4 -3 -2 -1 0 27) 1 2 3 4 5 6 7 28) 4x > 4 and x + 5 < 5 -6 -5 -4 -3 -2 26) 28) -1 0 1 2 3 4 5 6 29) x < 4 or x < 8 29) 30) 2x + 2 ≤ -8 or 2x + 2 ≥ -2 30) Express the set in simplest interval form. 31) (-6, 5) ∪ [0, 7] 31) Solve. 32) b-9 =9 33) 5 - 32) 1 x =4 8 33) Solve the inequality and graph the solution set. 34) k + 8 > 7 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 34) 6 8 10 12 14 16 18 35) 5 - x ≤ 8 -35 -30 35) -25 -20 -15 -10 -5 0 5 10 15 20 25 36) m - 5 < 0 30 35 36) -10 -5 0 5 37) |h - 9|+ 4 ≤ 9 10 37) 3 38) 4x - 1 ≥ 2 -14 -12 -10 -8 38) -6 -4 -2 0 2 4 6 8 10 12 14 Solve the equation. 39) 2s + 3 = s - 2 39) Solve the equation or inequality. 40) |5x - 5| > -4 40) 41) |6x - 5| < -8 41) Graph the equation by determining the missing values needed to plot the ordered pairs. 42) y + x = 4; (3, ), (4, ), (1, ) 42) y 10 5 -10 -5 5 10 x -5 -10 Find the x- and y-intercepts. Then graph the equation. 43) 6x - 18y = 18 43) y 10 5 -10 -5 5 10 x -5 -10 Find the midpoint of the segment with the given endpoints. 44) (-8, -3) and (7, 0) 44) 4 45) (-5.3, 2.2) and (-0.8, -6.8) 45) Find the slope of the line. 46) 46) y 10 5 -10 -5 5 10 x -5 -10 47) 47) y 10 5 -10 -5 5 10 x -5 -10 Find the slope of the line through the pair of points. 48) (7, -4) and (9, 1) 48) 5 Find the slope of the line, and sketch the graph. 49) y = 4x 49) y 10 5 -10 -5 5 10 x -5 -10 50) y + 4 = 0 50) y 10 5 -10 -5 5 10 x -5 -10 Graph the line. 51) Through (-2, 9); slope undefined 51) y 10 5 -10 -5 5 10 x -5 -10 6 52) Through (-2, -1); m = 3 52) y 10 5 -10 -5 5 10 x -5 -10 Decide whether the pair of lines is parallel, perpendicular, or neither. 53) The line through (-20, 5) and (-4, 7) and the line through (-5, 5) and (7, 4) 53) 54) 3x - 6y = 19 and 18x + 9y = 14 54) 55) 12x + 4y = 16 and 18x + 6y = 27 55) Solve the problem. Round your answer, as needed. 56) A deep sea diving bell is being lowered at a constant rate. After 8 minutes, the bell is at a depth of 300 ft. After 40 minutes the bell is at a depth of 1900 ft. What is the average rate of lowering per minute? Find the equation in slope-intercept form of the line satisfying the conditions. 1 57) m = ; through (0, 4) 2 56) 57) Write the equation in slope-intercept form, state the slope and y-intercept, and graph the equation. 58) 3x - 6y = -18 58) 8 y 6 4 2 -8 -6 -4 -2 2 4 6 8 x -2 -4 -6 -8 7 59) x + 6y = 30 59) 8 y 6 4 2 -8 -6 -4 -2 2 4 8 x 6 -2 -4 -6 -8 Write the equation in standard form of the line satisfying the given conditions. 3 60) Through (0, 5); m = 4 61) Through (-4, 0); m = -9 61) Write the equation in standard form of the line through the given points. 62) (6, 0) and (-3, 5) 63) (7, -4) and (5, 1) 65) Through (-3, 8); perpendicular to -3x + 4y = -23 66) y 10 5 5 10 64) 65) Graph the linear inequality in two variables. 66) 5x - y ≤ -1 -5 62) 63) Find an equation of the line satisfying the conditions. Write the equation in slope-intercept form. 64) Through (-6, 5); parallel to -7x + 5y = 57 -10 60) x -5 -10 8 Graph the compound inequality. 67) x + y ≥ 2 and y ≤ 2 67) y 4 2 -4 -2 2 6x 4 -2 -4 -6 68) 2x + y ≤ 4 and x - 1 > 0 68) y 4 2 -4 -2 2 6x 4 -2 -4 -6 69) 2x + y < 6 or 3x - 2y > 5 69) y 10 5 -10 -5 5 10 x -5 -10 9 70) 3x + y ≥ 3 or x - 4y ≤ 1 70) y 10 5 -10 -5 5 10 x -5 -10 Decide whether the relation is a function. 71) {(-6, -1), (-2, -9), (3, 9), (6, -1)} 71) 72) {(-8, 2), (-8, 8), (1, -5), (4, -6), (8, -2)} 72) Give the domain and range of the relation. 73) {(3, 3), (-3, -3), (-7, -7), (5, 5)} 73) Decide whether the relation is a function, and give the domain and range. 74) 74) y 10 5 -10 -5 5 10 x -5 -10 Determine whether the relation defines y as a function of x. Give the domain. 75) y = 4x - 2 76) 3x = 13 - 5y 77) y = 75) 76) 3 x + 19 77) Solve the problem. 78) Find g(a - 1) when g(x) = 2x - 5. 78) 10 79) Find f(1) when f(x) = x2 - 2x - 4. 79) 80) Find f(-6) when f = {(2, 9), (-2, -8), (-6, -4), (6, 0)}. 80) An equation that defines y as a function of x is given. Solve for y in terms of x, and replace y with the function notation f(x). 81) 5x - 6y = 5 81) Graph the linear or constant function. Give the domain and range. 1 82) g(x) = x 6 6 y 4 2 -6 -4 -2 2 4 6 x -2 -4 -6 11 82) Answer Key Testname: MATH 100 PRACTICE TEST 1 1) {All real numbers} 7 2) 8 26) φ -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 3) {57} 4) {75} 5) {68} 6) 11 7) Identity; {all real numbers} 8) Contradiction; ∅ 9) Conditional; {1} 10) 5x + (-8) = 13x; -1 1 11) x + 24 = 37; 52 4 27) [2, 6] -7 -6 -5 -4 -3 -2 -1 0 2 3 4 5 6 7 28) ∅ 29) (-∞, 8) -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 30) (-∞, -5] ∪ [-2, ∞) 12) 98 fern samples 13) 42,124 people 14) 5 liters 15) $30,000 16) 60 liters -10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 31) (-6, 7] 32) {18, 0} 33) {8, 72} 34) (-∞, -15) ∪ (-1, ∞) 17) [-10, ∞) -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 -5 2 4 6 8 10 12 14 16 18 35) [-3, 13] 18) [2, ∞) -5 1 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -35 9 -30 -25 -20 -15 -10 -5 0 5 10 36) ∅ 19) (-∞, 5) 37) [4, 14] -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 38) -∞, - 20) [-5, 2] -6 -4 -2 0 2 4 6 8 10 12 14 -14 -12 -10 -8 21) (-4, 0] 39) - 5, 40) (-∞, ∞) 41) ∅ -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 22) 1 3 ∪ ,∞ 4 4 13 19 , 3 3 13 3 19 3 23) {q, s, v, w, x, y, z} 24) {y, z} 25) ∅ 12 1 3 -6 -4 -2 0 2 4 6 8 10 12 14 15 Answer Key Testname: MATH 100 PRACTICE TEST 1 42) 49) Slope: 4 y -10 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 43) (3, 0); (0, -1) 44) - 10 x 5 10 x 50) Slope: 0 y -10 5 y 10 10 5 5 -5 5 10 x -10 -5 -5 -5 -10 -10 1 3 ,2 2 51) y 45) (-3.05, -2.3) 46) 1 47) Undefined 5 48) 2 10 5 -10 -5 5 -5 -10 13 10 x Answer Key Testname: MATH 100 PRACTICE TEST 1 52) 1 x + 5; 6 59) y = - y 10 slope: - 1 , y-intercept (0, 5) 6 5 8 y 6 -10 -5 5 10 x 4 -5 2 -8 -10 2 4 8 x 6 -6 -8 60) 3x + 4y = 20 61) 9x + y = -36 62) 5x + 9y = 30 63) 5x + 2y = 27 7 67 64) y = x + 5 5 1 , y-intercept (0, 3) 2 8 -2 -4 1 x + 3; 2 slope: -4 -2 53) Neither 54) Perpendicular 55) Parallel 56) 50.0 ft per minute 1 57) y = x + 4 2 58) y = -6 65) y = - y 4 x+4 3 66) 6 y 4 10 2 -8 -6 -4 -2 2 4 6 5 8 x -2 -4 -10 -5 5 -6 -5 -8 -10 14 10 x Answer Key Testname: MATH 100 PRACTICE TEST 1 67) 70) y y 10 4 5 2 -10 -4 -2 2 -5 5 x -5 -2 -10 -4 71) Function 72) Not a function 73) Domain: {-7, -3, 3, 5}; Range: {-7, -3, 3, 5} 74) Not a function; domain: (-∞, 2] ; range: (-∞, ∞) 1 75) Function; domain: , ∞ 2 -6 68) y 4 76) Function; domain: (-∞, ∞) 77) Function; domain: (-∞, -19) ∪ (-19, ∞) 2 -4 10 6x 4 -2 2 78) 2a - 7 79) -5 80) -4 6x 4 -2 81) f(x) = 5 - 5x -6 -4 82) domain: (-∞, ∞); range: (-∞, ∞) y -6 69) 6 y 4 10 2 5 -6 -4 -2 2 -2 -10 -5 5 10 x -4 -6 -5 -10 15 4 6 x