* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PH504lec0809-6
Survey
Document related concepts
Transcript
PH504 Capacitance; definition In a conductor, electrons are free to roam. Any net charge resides on the surface – the electric field is zero inside. When an isolated, finite size conductor is given a charge Q, its potential (with respect to a zero at infinity) is V. It can be shown that for any body that Q is proportional to V and the constant of proportionality is known as the capacitance (C) of the conductor. C = Q/V The capacitance can be thought of expressing the amount of charge the conductor can carry for a given potential V. Farad: The units of capacitance are the farad (symbol F). The Farad, F, is the SI unit for capacitance, and from the definition of capacitance is seen to be equal to a Coulomb/Volt. The capacitance of a body is a property of its shape and size. Example: It can be shown (see below) that a conducting sphere of radius a and carrying a charge Q has a potential . Hence from C = Q / V , just depending on its size! Note: for a = 1cm, C = .01/(9x109), this is about 1 pF. Practical capacitors generally consist of two conductors, in operation one carries a charge +Q the other a charge –Q. The definition of capacitance is still C = Q / V but now V is the potential difference between the bodies. Calculating Capacitance Place a charge +Q on one conductor and –Q on the other. Find the potential difference between the conductors by (a) using a suitable equation for the potential appropriate to the symmetry of the problem or (b) find the form of the E-field in the region between the two conductors and then integrate E with respect to a suitable spatial co-ordinate to find the potential difference. The result will be an equation for V in terms of Q and the spatial dimensions of the conductors. Finally use the definition C=Q/V to find an expression for C. Example 1: 2 Spheres (HyperPhysics website) Spherical Capacitor The capacitance for spherical or cylindrical conductors can be obtained by evaluating the voltage difference between the conductors for a given charge on each. By applying Gauss' law to a charged conducting sphere, the electric field outside it is found to be The voltage between the two spheres can be found by integrating the electric field along a radial line: From the definition of capacitance, the capacitance is Does an isolated charged sphere have capacitance? Isolated Sphere Capacitor? An isolated charged conducting sphere has capacitance. Applications for such a capacitor may not be immediately evident, but it does illustrate that a charged sphere has stored some energy as a result of being charged. Taking the concentric sphere capacitance expression: and taking the limits gives Further confirmation of this comes from examining the potential of a charged conducting sphere: Example 2: Coaxial Cable Consider a cylindrical surface of radius R. Take a charge per unit length Then Gauss's Law yields E 2r = o E = 2ro) for r > R. E=0 for r < R Suppose the permittivity within a coaxial cable is ko k = relative permittivity of the dielectric material between the plates. k=1 for free space, k>1 for all media, approximately =1 for air. Cylindrical Capacitor For a cylindrical geometry like a coaxial cable, the capacitance is usually stated as a capacitance per unit length. The charge resides on the outer surface of the inner conductor and the inner wall of the outer conductor. By applying Gauss' law to an infinite cylinder, the electric field outside a charged cylinder is found to be The voltage between the cylinders (in a vacuum)can be found by integrating the electric field along a radial line: The capacitance per unit length ( with rel. permittivity k) is: Example 3 : 2 parallel plates, charge Q & -Q, area A, separation d: Apply Gauss’s law: E = Q/(oA) - constant Potential diffence: V = d Q/(oA) and so C = Ao/d Parallel Plate Capacitor The capacitance of flat, parallel metallic plates of area A and separation d is given by the expression above where: = permittivity of space and Capacitance of Parallel Plates The electric field between two large parallel plates is given by Show The voltage difference between the two plates can be expressed in terms of the work done on a positive test charge q when it moves from the positive to the negative plate. It then follows from the definition of capacitance that Energy stored by a capacitor In charging a capacitor from zero to a finite charge Q work must be done (i.e. to remove electrons from the positive plate and overcome the repulsion from the negative plate). If at some point the charge is q and the potential is v (hence q=Cv) then to add an additional charge dq work dW=vdq must be done. Hence total work in charging from 0 to Q is given by an integral: or This is the work done in charging the capacitor and hence also equals the potential energy stored by a charged capacitor assuming that zero potential energy corresponds to zero charge. Energy Stored on a Capacitor The energy stored on a capacitor can be calculated from the equivalent expressions: This energy is stored in the electric field. From the definition of voltage as the energy per unit charge, one might expect that the energy stored on this ideal capacitor would be just QV. That is, all the work done on the charge in moving it from one plate to the other would appear as energy stored. But in fact, the expression above shows that just half of that work appears as energy stored in the capacitor. For a finite resistance, one can show that half of the energy supplied by the battery for the charging of the capacitor is dissipated as heat in the resistor, regardless of the size of the resistor. Stored energy in terms of the E-field For a parallel plate capacitor we can show that and where C is the capacitance, A is the area of the plates, d their separation and E is the E-field between the plates (the only region where E is non-zero). From above, the potential energy U is given by where E has been used to eliminate Q. The final result is simply (1/2)0E2x(volume between plates) This result suggests a general one that the potential energy is given by (1/2)0E2 multiplied by the volume over which E is nonzero or if E is not constant Electric Field Energy in Capacitor The energy stored on a capacitor is in the form of energy density in an electric field is given by This can be shown to be consistent with the energy stored in a charged parallel plate capacitor Capacitors Capacitance is typified by a parallel plate arrangement and is defined in terms of charge storage: where Q = magnitude of charge stored on each plate. V = voltage applied to the plates. Capacitor Combinations Capacitors in parallel add ... simply increasing Area A C = C1 + C2 + ….. Capacitors in series combine as reciprocals ... since they share the voltage V: Q/C = V = V1 + V2 + V3 + ….. Charge on Series Capacitors Since charge cannot be added or taken away from the conductor between series capacitors, the net charge there remains zero. You store less charge on series capacitors than you would on either one of them alone with the same voltage! Does it ever make sense to put capacitors in series? You get less capacitance and less charge storage than with either alone. It is sometimes done in electronics practice because capacitors have maximum working voltages, and with two "600 volt maximum" capacitors in series, you can increase the working voltage to 1200 volts. Conclusions Capacitance – definition and determination Potential energy stored in a capacitor