Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
STANDARD MODEL & BEYOND D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India Contents • Basic Constituents of Matter and their Interactions : Matter Fermions and Gauge Bosons (Std Model) • High Energy Colliders • Discovery of Std Model Particles at Colliders • Higgs Mechanism : Higgs Search at LHC • Supersymmetry : SUSY Search at LHC • Cosmological Implications (Natural units: ħ & c = 1 => m = mc2 , mp 1 GeV) Basic Constituents of Matter Mass (GeV) Fermions (Spin = 1/2 ħ) Leptons νe νμ ντ e .0005 μ 0.1 τ 1.8 e 0 -1 Quarks 2/3 -1/3 u 0.3 d 0.3 c 1.5 s 0.5 t 175 b 5 For each Pair : Δe = 1 => Weak Int Quarks also carry Colour Charge (C)=>Strong Int Basic Ints (Gauge Bosons & Groups) d 1. Strong Int (QCD) :SU(3) q q g Cq2αs / Q2 Q2 q q 2. E.M. Int (QED) :U(1) q e γ eqee α / Q2 Q2 q e p u SU(3) => Cg => ggg Int => Confinement u u r d F = Constant => V –> r p e F = α/r2 => V = α/r 3. Weak Int : SU(2) νμ e W => V = (α/r) . Exp ( -r MW ) αW / Q2-MW2 Q2 μ νe 2 => DA = α / M 2 μ —> eν ν : Q2 « M μ e W μ W W νe SU(2)xU(1) EW Th (GSW) =>αW=α/sin2θW4α => DAμ 4α/MW2 => MW=80 GeV, MZ=91GeV • • • • p (uud), n (udd), e => All the Visible Matter Heavier Leptons & Quarks Decay by Weak Int They can be Observed in Accelerator or Cosmic ray Cosmic ray Observation of μ and k (sū) in 1947 • νs are stable but very hard to Observe <= Weak Int • • • • νe Observed in Atomic Reactor Expt in 1956 νμ in BNL PS in 1962 ( KGF Cosmic ray in 1965) e+e- Collider : c (1974), τ (1975), b (1977), g (1979) p-p Collider : W & Z (1983), t (1995), ντ (2000) FT eBv = mv2/R eB = mv/R e+e - ( p - p) Collider Accleration Mode Collision Mode Advantage of Collider over Fixed Target Accelerator E E’ E s 2mE' s 2E Tevatron p-p Collider s 21000 GeV 1TeV E ' Equiv s (2000GeV ) 2 2000,000GeV 2m p 2 1GeV p-p Collider vs e+e - Collider s’ s’ ~ < xq >2 sp-p 1/6 Same s' s p p 6 see : ESync s’ s’ = se e+ 4 .e 2 E 4 4 3me s' M Z 100GeV : s p p 600GeV , see 100GeV CERN: p-p Coll. (ρ = 1 km), LEP-I (ρ = 5 km) COST: ( 200 + 100) million$, 1 billion$ Precission:Tune e-e+ Energy = MZ => Higher Rate & Better Mass Res Z events/yr : LEP-I ~ 10 6, CERN p-p Coll. ~ 10 1-2 Signal : Clean , Dirty (Debris from Spectator q & g) Past, Present & Proposed Colliders Period Machine Location 70’s SPEAR DORIS CESR PEP PETRA Stanford e+eHamburg Cornell Stanford Hamburg 80’s 90’s TRISTAN Japan SPPS CERN Beam Energy(GeV) Radius Highlight e+epp Tevatron SLC LEP-I (LEP-II) HERA Fermilab p p Stanford e+eCERN 2009 2??? 3+3 5+5 8+8 18+18 22+22 30+30 300+300 125 m charm , τ bottom bottom 300 m gluon 1 km W,Z boson 5 km Hamburg e p 1000+1000 50+50 50+50 100+100 30+800 LHC CERN pp 7000+7000 5 km ILC ??? e+e- 500+500 Top Z Z W Higgs,SUSY kT ~ ħ/1fm~0.2 GeV 3-jets 80 GeV 91 GeV Hard Isolated e / μ with 3 - 4 Hard jets 175 GeV 80 GeV Godbole, Pakvasa & Roy, Phys. Rev. Lett. 50, 1539 (1983) Gupta & Roy, Z. Phys. C39, 417 (1988) Top pair production Mass Problem : Higgs Mechanism How to give mass to the SU(2) Gauge Bosons w/o breaking Gauge Sym of the L ? For simplicity look at the U(1) Gauge Th (EM Int). v h LEM v h 1 ( ieA ) ( ieA ) [ ( ) ] F F 4 * 2 * * F A A E1..3 , B1..3 GaugeTr : e 1 , A A ( x) e μ2<0 μ2>0 vev r v h( x ) M ev -M2 Aμ Aμ i ( x ) V 2 * ( * ) 2 v 2 / 2 < mq = yqv mh 2 v / e M ~ 102 GeV vh 0 1 vh g2 g v WW g v hWW MW2 0 1 Wμ Wμ 2 2 vh 0 1 2 gMW q yq q yq v qq yq hqq mq mq / v Higgs couplings to Particles is Proportional to their Mass =>Most Important Channels for Higgs Search are the Heavy Pairs: h ( WW, ZZ, tt, bb, ττ ) & H± ( tb, τν ) τ Polarization Effect <= Roy, Phys.Lett.B459, 607 (1999) Ferromagnetism (Spontaneous Symmetry Breaking) T < TC Rotational Symmetry Broken T > TC Rotational Symmetry H , He pe p pne p n uud ddu e WZhtbeνγ Hierarchy Problem: Supersymmetry (SUSY) Solution How to control Higgs Mass mh ~ MW ~ 102 GeV? 1 (k 2 m 2 ) k h k 3dk 2 2 k 2 (k m ) ~ h - h λ Without a protecting symmetry scalar mass gets quad. div. quantum corr. m ( M ;M ) h GUT Plank 16 19 GeV 10 10 SUSY: fermions<=>bosons s q, l 1/2 , g ,W , Z ~ ~ q, l 0 ~ ~ ~ ~ , g ,W , Z s 1 1/2 h1, 2 ~ h1, 2 => Superparticles mass ~ 10 2 GeV s 0 1/2 R (1)3B L 2s 1 1 R Cons.=> Pair-prod of SP & Stable LSP (Cold dark matter) LSP ~:Weakly Int Massive Particle (WIMP) M ~e ,q~ M W => LSP escapes detection like ν => Apparent imbalance of PT (Missing-PT Signature) Pair production of Gluinos and Squarks at LHC => Multi-jet plus Missing-PT Signature for SUSY Reya & Roy, Phys. Lett. 141B, 442 (1984); Phys. Rev. Lett. 53, 881 (1984) Conclusion • Higgs & Superparticles are the minimal set of missing pieces reqd. complete the picture of particle physics (MSSM). • LHC offers comprehensive Higgs and Superparticle search up to MH,SUSY= 1000GeV. • It will either complete the picture a la MSSM or provide valuable clue for an alternative picture : Little Higgs, Extra Dim, ETC...↓ • LSP is leading candidate for the cosmic dark matter ~ 10 times the baryonic matter of the Universe. Rotation curve of nearby dwarf spiral galaxy M33, superimposed on its optical image 2 v M ( R) G v 2 R R M ( R) R H , He pe p pne p n uud ddu e WZhtbeνγ ~ ~ ~ ~~~~~~~ ~ ~~ ~ ~ ~ ~~ WZ h t b e