Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Standard 4, 9, 17 PARABOLAS DEFINITION OF A PARABOLA PARTS OF A PARABOLA SUMMARY OF FORMULAS PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 4 PROBLEM 5 PROBLEM 6 PROBLEM 7 PROBLEM 8 END SHOW1 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved ALGEBRA II STANDARDS THIS LESSON AIMS: STANDARD 4: Students factor polynomials representing the difference of squares, perfect square trinomials, and the sum and difference of two cubes ESTÁNDAR 4: Los estudiantes factorizan polinomios representando diferencia de cuadrados, trinomios cuadrados perfectos, y la suma de diferencia de cubos. STANDARD 9: Students demonstrate and explain the effect that changing a coefficient has on the graph of quadratic functions; that is, students can determine how the graph of a parabola changes as a, 2 b, and c vary in the equation y = a(x-b) + c. ESTÁNDAR 9: Los estudiantes demuestran y explican los efectos que tiene el cambiar coeficientes en la 2 gráfica de funciones cuadráticas; esto es, los estudiantes determinan como la gráfica de una parabola cambia con a, b, y c variando en la ecuación y=a(x-b)2 + c STANDARD 17: 2 Given a quadratic equation of the form ax 2 + by + cx + dy + e = 0, students can use the method for completing the square to put the equation into standard form and can recognize whether the graph of the equation is a circle, ellipse, parabola, or hyperbola. Students can then graph the equation. Estándar 17: 2 Dada una equación cuadrática de la forma ax +by 2 + cx + dy + e=0, los estudiantes pueden usar el método de completar al cuadrado para poner la ecuación en forma estándar y pueden reconocer si la gráfica es un círculo, elipse, parábola o hiperbola. Los estudiantes pueden 2 graficar la ecuación PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 DEFINITION OF A PARABOLA: A parabola is the set of all points in a plane that are the same distance from a given point called the focus and a given line called directrix. y x focus directrix 3 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 PARTS OF A PARABOLA: y axis of symmetry latus rectum x focus vertex directrix 4 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 PARABOLAS: SUMMARY 2 Form of equation y = a(x-h) + k x = a(y-k)2 + h Axis of symmetry x= h y=k Vertex (h,k) (h,k) Focus 1 (h, k + 4a ) (h + 4a , k) Directrix Direction of openning Length of latus rectum y=k- 1 4a Upward if a>0 Downward if a<0 1 a 1 units PRESENTATION CREATED BY SIMON PEREZ. All rights reserved 1 x = h - 4a Right if a>0 Left if a<0 1 a units 5 Standard 4, 9, 17 Find the vertex, axis of symmetry, focus, directrix and Latus 2 rectum from y= 1 (x+5) + 2 and graph it. 6 1 1 Focus: (h, k + 4a ) =( -5, 2 + 1 ) 4 2 1 6 y= (x+5) + 2 6 1 =( -5, 2 + ) 4 Rewriting the equation: 1 1 6 2 1 1 1 3 1 y= (x- -5) + (+2) 3 = =4 = 2 6 =( -5, 2 + ) 2 4 2 3 1 6 6 2 =( -5, 3 ) y = a(x-h) + k 2 2 2+ 3 = 4 + 3 1 2 2 2 h= -5 2 Directrix: y = k 4a 7 = k= 2 1 2 y = 2 3 1 1 ) a= 4( 1 2 7 6 3 6 6 2 Vertex: (h,k) = (-5, 2) y=2- 3 1 2 Axis of symmetry: x= -5 1 y= 2 2- 3 = 4 - 3 2 1 2 2 2 2 1 1 1 = 1 =6 2 1 = 1 Latus rectum: a 6 6 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: x= -5 y 10 Vertex: (-5, 2) 8 6 Axis of symmetry: x= -5 4 1 Focus: ( -5, 3 ) 2 1 Directrix: y = 2 y= 2 -10 -8 -6 -4 -2 2 -2 4 6 8 1 2 10 x -4 Latus rectum = 6 -6 a>0 so it opens upward. -8 7 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 Find the vertex, axis of symmetry, focus, directrix and Latus rectum from y= - 1 (x+6)2 + 3 and graph it. 8 1 1 ) Focus: (h, k + 4a ) =( -6, 3 + 1 4 2 1 8 y= - (x+6) + 3 8 1 =( -6, 3 + ) 1 1 4 Rewriting the equation: 1 1 1 +2 8 =1 2 = = 1 1 y= - (x- -6) + (+3) 4 8 - 4 =( -6, 3 + -2 ) 2 8 8 = -2 2 =( -6, 3 - 2) y = a(x-h) + k h= -6 k= 3 Directrix: y = k - 1 4a a= - 1 8 Vertex: (h,k) = (-6, 3) 1 4( - 1 ) 8 y = 3 - (-2) Axis of symmetry: x= -6 y=3+2 =( -6, 1 ) y=3 - y=5 1 Latus rectum: a PRESENTATION CREATED BY SIMON PEREZ. All rights reserved 1 -1 = 8 1 1 -1 8 =8 Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: y Vertex: (-6, 3) x=- 6 20 16 Axis of symmetry: x= -6 12 8 Focus: ( -6, 1) y= 5 4 Directrix: y = 5 -20 -16 -12 -8 -4 4 -4 Latus rectum =8 8 12 16 20 x -8 a<0 so it opens downward -12 -16 9 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 2 Write 4x= y 2 -4y + 8 in the form x = a(y-k) + h and graph it. Changing the form of the equation: Vertex: (h,k) = (1, 2) 2 4x = y -4y + 8 2 4 4 4x = (y 2 -4y + 2 )+ 8 - 2 2 Axis of symmetry: y= 2 1 Focus: (h + , k) =(1 + 4a 2 2 4x = (y - 4y + (2) )+ 8 - (2) 2 2 4x =(y -4y + 4 )+ 8 - (4) 2 4x = (y -2) + 4 4 4 4 2 1 x= (y-2) + 4 4 2 1 x= (y-2) + 1 4 Rewriting the equation: 2 1 x= (y- +2) + (+1) 4 2 x = a(y-k) + h Directrix: x = h - 1 4a 1 x=14 1 4 1 x=11 h= 1 x= 0 k= 2 1 1 a= Latus rectum: 4 a PRESENTATION CREATED BY SIMON PEREZ. All rights reserved 1 , 2) 4 1 4 = (1 + 1 , 2) 4 4 = ( 1 + 1 , 2) =(2,2) 1 1 1 1 1 = 1 4 4 =4 Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: directrix y Vertex: (1,2) latus rectum 5 4 Axis of symmetry: y= 2 3 Focus: (2,2) axis of symmetry focus 2 vertex 1 Directrix: x =0 -5 -4 -3 -2 1 -1 -1 Latus rectum = 4 2 3 4 5 x -2 a>0 so it opens rightward. -3 -4 11 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 2 Write 4x= y 2 -6y + 3 in the form x = a(y-k) + h and graph it. Vertex: (h,k) = ( - 3 , 3) 2 2 4x = y -6y + 3 Axis of symmetry: y= 3 2 1 6 6 2 Focus: (h + , k) =(- 3 + 1 , 3) 4a 2 4 1 4x = (y 2 -6y + 2 )+ 3 - 2 4 2 2 3 = ( + 1 , 3) 4x = (y 2 - 6y + (3) )+ 3 - (3) 3 1 2 3 2 2 4 + = + 2 2 1 2 2 2 (9) 9 4x =(y -6y + )+ 3 4 =- 1 3 + 1 , 3) 2 =( 2 4x = (y -3) - 6 2 1 4 4 1 =( - ,3) 1 2 Directrix: x = h 6 2 1 4a x= (y-3) 4 4 3 1 x = 2 1 2 4 1 x= (y-3) - 3 4 2 4 3 1 2 x = Rewriting the equation: 3 2 1 2 h= 1 2 1 3 2 2 5 x= (y- +3) + ( - 3 ) x= - - = 1 4 2 2 2 k= 3 2 1 =4 1 1 1 1 = 2 a= Latus rectum: x = a(y-k) + h 4 4 a 4 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Changing the form of the equation: Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: x= - 5 2 y Vertex: (h,k) = ( - 3 , 3) 2 Axis of symmetry: y= 3 5 4 y= 3 3 Focus: ( - 1 ,3) 2 2 1 Directrix: x = - 5 2 Latus rectum = 4 -5 -4 -3 -2 1 -1 -1 2 3 4 5 x -2 a>0 so it opens rightward. -3 -4 1 2 13 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 2 Write y= 4x2+ 24x + 16 in the form y = a(x-h) + k and graph it. Changing the form of the equation: Vertex: (h,k) = (-3,-20) 2 y = 4x + 24x + 16 Axis of symmetry: x= -3 1 1 ) Focus: (h, k + 4a ) =(-3, -20 + 4( ) 4 2 2 2 (3) (3) y = 4(x + 6x + )+ 16 -4 1 =(-3, -20 + 16 ) 2 y = 4(x + 6x + 9 )+ 16 -4 (9) 15 -19 =(-3, 2 16 ) y = 4(x + 3) + 16 - 36 1 Directrix: y = k 2 4a y = 4(x + 3) - 20 y = -20- 1 4( 4 ) Rewriting the equation: 1 2 y = -20 y = 4(x - -3) + (-20) 16 1 2 y = -20 y = a(x-h) + k 16 h= -3 a>0 so it opens upward. k= -20 14 1 1 Latus rectum: a= 4 a 4 =.25 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved 2 6 6 2 y = 4(x + 6x + 2 )+ 16 -4 2 2 Standard 4, 9, 17 Summarizing the information about the parabola and graphing it: y Vertex: (-3,-20) axis of symmetry Axis of symmetry: x= -3 -5 -4 -3 -2 1 -1 2 3 4 x 5 -3 15 Focus: (-3, -19 ) 16 1 Directrix: y = -20 16 -6 -9 Latus rectum = .25 -12 a>0 so it opens upward. -15 latus rectum focus -18 vertex-21 -20 directrix -24 -27 15 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 The coordinates of the focus and equation of the directrix of a parabola are as follows. Write an equation for the parabola and graph it. (-3, -2); y = -6 Since the directrix is a horizontal line the parabola is a vertical parabola. And the following applies: 1 If focus formula is (h, k + 4a ) then h = -3 and k+ 1 4a = -2 Equation 1 Solving both equations by substitution: -6 + 1 4a + 1 = -2 4a 2 = -2 4a +6 +6 2 (4a) = 4 (4a) 4a -6 + 2 = 16a 1 If directrix formula is y = k 4a then 1 k4a = -6 1 1 + + 4a 4a k=-6+ 2 = 16a 16 16 a= 2 16 a= 1 8 . . 2 . .2 1 Equation 2 4a Substituting a in equation 2: 1 1 1 1 k = -6 + = -6 + = -6 + 4 4 4 1 8 8 8 8 k = -6 + = -6 + 2 4 16 k = -4 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 Summarizing information about the parabola: h= -3 k= -4 1 a= 8 Vertex: (-3,-4) So the equation is: 2 1 y= (x- -3) + (-4) 8 2 y = 1 (x+3) - 4 8 Axis of symmetry is x = -3 Focus: (-3, -2) Directrix: y = -6 1 Latus rectum: a 1 1 1 1 = 1 8 8 y 10 x=- 3 8 =8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 -2 -4 -6 x y= -6 -8 17 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved Standard 4, 9, 17 Find the equation of the parabola shown in the graph. y 5 We know that the graph pass through point (x,y)=(-2,3). We use this point to substitute it on the equation to find a: 4 3 2 2 1 -5 -4 -3 -2 x=a(y-1) -3 1 -1 -1 -2 -3 2 3 4 5 x 2 ( -2 )= a (( 3 )-1) -3 -2 = a(3-1)2 - 3 2 -2 = a(2) - 3 -4 From the graph: Vertex = (-3,1) This is a horizontal parabola x = a(y-k)2 + h so: 2 x= a (y- +1 ) + ( -3 ) -2 = a(4) - 3 -2 = 4a - 3 +3 +3 1 = 4a 4 4 Now we substitute in the parabola’s equation: 1 a= 4 2 x=a(y-1) -3 x= PRESENTATION CREATED BY SIMON PEREZ. All rights reserved 2 1 (y-1) - 3 4 18 Standard 4, 9, 17 Find the equation of the parabola shown in the graph. y 5 We know that the graph pass through point (x,y)=(0,-3). We use this point to substitute it on the equation to find a: 4 3 2 2 1 -5 -4 -3 -2 y=a(x-2) -4 1 -1 -1 -2 -3 2 3 4 5 x 2 ( -3 )= a (( 0 )-2) -4 -3 = a(0-2)2 - 4 2 -3 = a(-2) - 4 -4 From the graph: Vertex = (2,-4) This is a vertical parabola 2 so: y = a(x-h) + k 2 y= a (x- +2 ) + ( -4 ) -3 = a(4) - 4 -3 = 4a - 4 +4 +4 1 = 4a 4 4 1 a= 4 Now we substitute in the parabola’s equation: 2 1 y= (x-2) - 4 4 2 y=a(x-2) -4 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved 19