Download + (+1)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Standard 4, 9, 17
PARABOLAS
DEFINITION OF A PARABOLA
PARTS OF A PARABOLA
SUMMARY OF FORMULAS
PROBLEM 1
PROBLEM 2
PROBLEM 3
PROBLEM 4
PROBLEM 5
PROBLEM 6
PROBLEM 7
PROBLEM 8
END SHOW1
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
ALGEBRA II STANDARDS THIS LESSON AIMS:
STANDARD 4:
Students factor polynomials representing the difference of squares, perfect square trinomials,
and the sum and difference of two cubes
ESTÁNDAR 4:
Los estudiantes factorizan polinomios representando diferencia de cuadrados, trinomios
cuadrados perfectos, y la suma de diferencia de cubos.
STANDARD 9:
Students demonstrate and explain the effect that changing a coefficient has on the graph of
quadratic functions; that is, students can determine how the graph of a parabola changes as a,
2
b, and c vary in the equation y = a(x-b) + c.
ESTÁNDAR 9:
Los estudiantes demuestran y explican los efectos que tiene el cambiar coeficientes
en la
2
gráfica de funciones cuadráticas; esto es, los estudiantes determinan como la gráfica de una
parabola cambia con a, b, y c variando en la ecuación y=a(x-b)2 + c
STANDARD 17:
2
Given a quadratic equation of the form ax 2 + by + cx + dy + e = 0, students can use the method
for completing the square to put the equation into standard form and can recognize whether
the graph of the equation is a circle, ellipse, parabola, or hyperbola. Students can then graph
the equation.
Estándar 17:
2
Dada una equación cuadrática de la forma ax +by 2 + cx + dy + e=0, los estudiantes pueden
usar el método de completar al cuadrado para poner la ecuación en forma estándar y pueden
reconocer si la gráfica es un círculo, elipse, parábola o hiperbola. Los estudiantes pueden
2
graficar la ecuación
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
DEFINITION OF A PARABOLA:
A parabola is the set of all points in a plane that are the same distance from
a given point called the focus and a given line called directrix.
y
x
focus
directrix
3
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
PARTS OF A PARABOLA:
y
axis of symmetry
latus rectum
x
focus
vertex
directrix
4
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
PARABOLAS: SUMMARY
2
Form of equation
y = a(x-h) + k
x = a(y-k)2 + h
Axis of symmetry
x= h
y=k
Vertex
(h,k)
(h,k)
Focus
1
(h, k + 4a
)
(h + 4a , k)
Directrix
Direction of
openning
Length of latus
rectum
y=k-
1
4a
Upward if a>0
Downward if a<0
1
a
1
units
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
1
x = h - 4a
Right if a>0
Left if a<0
1
a
units
5
Standard 4, 9, 17
Find the vertex, axis of symmetry, focus, directrix and Latus
2
rectum from y= 1 (x+5) + 2 and graph it.
6
1
1
Focus: (h, k + 4a ) =( -5, 2 +
1 )
4
2
1
6
y= (x+5) + 2
6
1
=( -5, 2 +
)
4
Rewriting the equation:
1
1
6
2
1
1
1
3
1
y= (x- -5) + (+2)
3
=
=4 = 2
6
=(
-5,
2
+
)
2
4
2
3
1
6
6
2
=( -5, 3
)
y = a(x-h) + k
2
2 2+ 3 = 4 + 3
1
2
2 2
h= -5
2
Directrix: y = k 4a
7
=
k= 2
1
2
y
=
2
3
1
1 )
a=
4(
1
2
7
6
3
6
6
2
Vertex: (h,k) = (-5, 2)
y=2- 3
1
2
Axis of symmetry: x= -5
1
y=
2 2- 3 = 4 - 3
2
1
2
2
2
2
1
1
1
=
1
=6
2
1 = 1
Latus rectum:
a
6
6
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
Summarizing the information about the parabola and graphing it:
x= -5
y
10
Vertex: (-5, 2)
8
6
Axis of symmetry: x= -5
4
1
Focus: ( -5, 3
)
2
1
Directrix: y =
2
y=
2
-10 -8
-6 -4
-2
2
-2
4
6
8
1
2
10
x
-4
Latus rectum = 6
-6
a>0 so it opens upward.
-8
7
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
Find the vertex, axis of symmetry, focus, directrix and Latus
rectum from y= - 1 (x+6)2 + 3 and graph it.
8
1
1
)
Focus: (h, k + 4a ) =( -6, 3 +
1
4
2
1
8
y= - (x+6) + 3
8
1
=( -6, 3 +
)
1
1
4
Rewriting the equation:
1
1
1
+2
8
=1
2
=
=
1
1
y= - (x- -6) + (+3)
4
8
- 4
=( -6, 3 + -2 )
2
8
8
= -2
2
=( -6, 3 - 2)
y = a(x-h) + k
h= -6
k= 3
Directrix: y = k -
1
4a
a= - 1
8
Vertex: (h,k) = (-6, 3)
1
4( - 1 )
8
y = 3 - (-2)
Axis of symmetry: x= -6
y=3+2
=( -6, 1 )
y=3 -
y=5
1
Latus rectum:
a
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
1
-1 =
8
1
1
-1
8
=8
Standard 4, 9, 17
Summarizing the information about the parabola and graphing it:
y
Vertex: (-6, 3)
x=- 6
20
16
Axis of symmetry: x= -6
12
8
Focus: ( -6, 1)
y= 5
4
Directrix: y = 5
-20 -16 -12 -8
-4
4
-4
Latus rectum =8
8
12 16
20
x
-8
a<0 so it opens downward
-12
-16
9
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
2
Write 4x= y 2 -4y + 8 in the form x = a(y-k) + h and graph it.
Changing the form of the equation:
Vertex: (h,k) = (1, 2)
2
4x = y -4y + 8
2
4
4
4x = (y 2 -4y + 2 )+ 8 - 2
2
Axis of symmetry: y= 2
1
Focus: (h +
, k) =(1 +
4a
2
2
4x = (y - 4y + (2) )+ 8 - (2)
2
2
4x =(y -4y + 4 )+ 8 - (4)
2
4x = (y -2) + 4
4
4
4
2
1
x= (y-2) +
4
4
2
1
x= (y-2) + 1
4
Rewriting the equation:
2
1
x= (y- +2) + (+1)
4
2
x = a(y-k) + h
Directrix: x = h - 1
4a
1
x=14 1
4
1
x=11
h= 1
x= 0
k= 2
1
1
a=
Latus
rectum:
4
a
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
1 , 2)
4 1
4
= (1 + 1 , 2)
4
4
= ( 1 + 1 , 2) =(2,2)
1
1
1
1
1 = 1
4
4
=4
Standard 4, 9, 17
Summarizing the information about the parabola and graphing it:
directrix
y
Vertex: (1,2)
latus rectum
5
4
Axis of symmetry: y= 2
3
Focus: (2,2)
axis of symmetry
focus
2
vertex
1
Directrix: x =0
-5
-4
-3
-2
1
-1
-1
Latus rectum = 4
2
3
4
5
x
-2
a>0 so it opens rightward.
-3
-4
11
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
2
Write 4x= y 2 -6y + 3 in the form x = a(y-k) + h and graph it.
Vertex: (h,k) = ( - 3 , 3)
2
2
4x = y -6y + 3
Axis of symmetry: y= 3
2
1
6
6 2
Focus: (h +
, k) =(- 3 + 1 , 3)
4a
2
4 1
4x = (y 2 -6y + 2 )+ 3 - 2
4
2
2
3
=
(
+ 1 , 3)
4x = (y 2 - 6y + (3) )+ 3 - (3)
3
1 2
3 2
2
4
+
=
+
2
2
1
2
2
2
(9)
9
4x =(y -6y +
)+ 3 4
=- 1
3 + 1 , 3)
2
=(
2
4x = (y -3) - 6
2 1
4
4
1
=( - ,3)
1
2
Directrix: x = h 6
2
1
4a
x= (y-3) 4
4
3
1
x
=
2
1
2 4 1
x= (y-3) - 3
4
2
4
3 1 2
x
=
Rewriting the equation:
3
2
1 2
h=
1
2
1
3 2
2
5
x=
(y- +3) + ( - 3 )
x= - - = 1
4
2 2
2
k= 3
2
1
=4
1
1
1
1
=
2
a=
Latus rectum:
x = a(y-k) + h
4
4
a
4
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Changing the form of the equation:
Standard 4, 9, 17
Summarizing the information about the parabola and graphing it:
x= - 5
2
y
Vertex: (h,k) = ( - 3 , 3)
2
Axis of symmetry: y= 3
5
4
y= 3
3
Focus: ( - 1 ,3)
2
2
1
Directrix: x = - 5
2
Latus rectum = 4
-5
-4
-3
-2
1
-1
-1
2
3
4
5
x
-2
a>0 so it opens rightward.
-3
-4
1
2
13
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
2
Write y= 4x2+ 24x + 16 in the form y = a(x-h) + k and graph it.
Changing the form of the equation:
Vertex: (h,k) = (-3,-20)
2
y = 4x + 24x + 16
Axis of symmetry: x= -3
1
1
)
Focus: (h, k + 4a ) =(-3, -20 +
4(
)
4
2
2
2
(3)
(3)
y = 4(x + 6x +
)+ 16 -4
1
=(-3, -20 + 16 )
2
y = 4(x + 6x + 9 )+ 16 -4 (9)
15
-19
=(-3,
2
16 )
y = 4(x + 3) + 16 - 36
1
Directrix: y = k 2
4a
y = 4(x + 3) - 20
y = -20- 1
4( 4 )
Rewriting the equation:
1
2
y
=
-20
y = 4(x - -3) + (-20)
16
1
2
y
=
-20
y = a(x-h) + k
16
h= -3
a>0 so it opens upward.
k= -20
14
1
1
Latus
rectum:
a= 4
a
4 =.25
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
2
6
6
2
y = 4(x + 6x + 2 )+ 16 -4 2
2
Standard 4, 9, 17
Summarizing the information about the parabola and graphing it:
y
Vertex: (-3,-20)
axis of symmetry
Axis of symmetry: x= -3
-5
-4
-3
-2
1
-1
2
3
4
x
5
-3
15
Focus: (-3, -19 )
16
1
Directrix: y = -20
16
-6
-9
Latus rectum = .25
-12
a>0 so it opens upward.
-15
latus rectum
focus
-18
vertex-21
-20
directrix
-24
-27
15
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
The coordinates of the focus and equation of the directrix of a parabola
are as follows. Write an equation for the parabola and graph it.
(-3, -2); y = -6
Since the directrix is a horizontal line the parabola
is a vertical parabola. And the following applies:
1
If focus formula is (h, k +
4a )
then h = -3 and
k+
1
4a = -2 Equation 1
Solving both equations by substitution:
-6 +
1
4a
+
1
= -2
4a
2
= -2
4a
+6
+6
2
(4a) = 4 (4a)
4a
-6 +
2 = 16a
1
If directrix formula is y = k 4a
then
1
k4a = -6
1
1
+
+ 4a 4a
k=-6+
2 = 16a
16 16
a= 2
16
a= 1
8
.
. 2
.
.2
1
Equation 2
4a
Substituting a in equation 2:
1
1
1
1
k = -6 +
=
-6
+
=
-6
+
4
4
4 1
8
8
8
8
k = -6 +
= -6 + 2
4
16
k = -4
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
Summarizing information about the parabola:
h= -3
k= -4
1
a=
8
Vertex: (-3,-4)
So the equation is:
2
1
y= (x- -3) + (-4)
8
2
y = 1 (x+3) - 4
8
Axis of symmetry is x = -3
Focus: (-3, -2)
Directrix: y = -6
1
Latus rectum:
a
1
1
1
1 = 1
8
8
y
10
x=- 3
8
=8
6
4
2
-10 -8
-6 -4
-2
2
4
6
8
10
-2
-4
-6
x
y= -6
-8
17
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
Standard 4, 9, 17
Find the equation of the parabola shown in the graph.
y
5
We know that the graph pass
through point (x,y)=(-2,3). We use
this point to substitute it on the
equation to find a:
4
3
2
2
1
-5
-4
-3
-2
x=a(y-1) -3
1
-1
-1
-2
-3
2
3
4
5
x
2
( -2 )= a (( 3 )-1) -3
-2 = a(3-1)2 - 3
2
-2 = a(2) - 3
-4
From the graph:
Vertex = (-3,1)
This is a horizontal parabola
x = a(y-k)2 + h
so:
2
x= a (y- +1 ) + ( -3 )
-2 = a(4) - 3
-2 = 4a - 3
+3
+3
1 = 4a
4 4
Now we substitute in the
parabola’s equation:
1
a=
4
2
x=a(y-1) -3
x=
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
2
1
(y-1) - 3
4
18
Standard 4, 9, 17
Find the equation of the parabola shown in the graph.
y
5
We know that the graph pass
through point (x,y)=(0,-3). We use
this point to substitute it on the
equation to find a:
4
3
2
2
1
-5
-4
-3
-2
y=a(x-2) -4
1
-1
-1
-2
-3
2
3
4
5
x
2
( -3 )= a (( 0 )-2) -4
-3 = a(0-2)2 - 4
2
-3 = a(-2) - 4
-4
From the graph:
Vertex = (2,-4)
This is a vertical parabola
2
so:
y = a(x-h) + k
2
y= a (x- +2 ) + ( -4 )
-3 = a(4) - 4
-3 = 4a - 4
+4
+4
1 = 4a
4 4
1
a=
4
Now we substitute in the
parabola’s equation:
2
1
y= (x-2) - 4
4
2
y=a(x-2) -4
PRESENTATION CREATED BY SIMON PEREZ. All rights reserved
19