Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
VII. Analysis of Potential Flows Contents 1. Preservation of Irrotationality 2. Description of 2D Potential Flows 3. Fundamental Solutions 4. Superposition 1. Preservation of Irrotationality r n Stokes Theorem ò S r r n ×(Ñ ´ u )dS = Vorticity r W S r r òÑu ×dl C Circulation G C Kelvin’s Theorem In the flow of an ideal fluid with constant density, circulation along a fluid line is invariant if body force is conservative t +t t C D G(C ) = 0 Dt DG D = Dt Dt r r òÑu ×dl = C D r r òÑC Dt u ×dl ( r r D r r Du r r D dl u ×dl = ×dl + u × Dt Dt Dt ( ) ) ( ) r æ Du 1 pö ÷ ç = ÑY - Ñ p = Ñ çY - ÷ ÷ çè ÷ Dt r rø r dl r r1 r r2 r D dl ( )= Dt r r r r D r (r2 - r1 ) = u 2 - u1 = du Dt DG = Dt é æ ö r r rù p ÷ êÑ ççY - ÷×dl + u ×du ú òÑC ê çè r ÷÷ø ú ë û æ ö r r p 1 ÷ ççY = ò d + u × u ÷ ÑC çè r 2 ø÷÷ = 0 A piece of fluid is always irrotational if it is initially irrotational 2. Description of 2D Potential Flows 2D Flow in x-y plane w= 0 ¶ = 0 ¶z Basic Equations for 2D Potential Flows ¶u ¶v + = 0 ¶x ¶y ¶v ¶u = 0 ¶x ¶y ìï ¶ u ¶u ¶u 1 ¶p ïï +u +v = fx ïï ¶ t ¶x ¶y r ¶x í ïï ¶ v ¶v ¶v 1 ¶p + u + v = f ïï y ¶ t ¶ x ¶ y r ¶y ïî ¶f 1 2 p 2 + (u + v ) + - Y = C ¶t 2 r Velocity Potential Irrotational flow ¶v ¶u = 0 ¶x ¶y Definition of Velocity Potential ¶f u= ; ¶x ¶f v= ¶y Continuity Equation ¶u ¶v + = 0 ¶x ¶y ¶ 2f ¶ 2f + = 0 2 2 ¶x ¶y Stream Function Incompressible fluid ¶u ¶v + = 0 ¶x ¶y Definition of Stream Function ¶y u= ; ¶y ¶y v= ¶x Irrotational condition ¶v ¶u = 0 ¶x ¶y ¶ 2y ¶ 2y + = 0 2 2 ¶x ¶y Properties of Stream Function y = constant represents a streamline y = constant along y = y (x ) ¶y ¶y dy = dx + dy ¶x ¶y = - vdx + udy = 0 dx dy = u v Properties of Stream Function y2 q y1 q = y2 - y1 y2 B r u r n A y1 q= ò B ò B ò B ò B A = A = A = A r r u ×n dl = B ò (un A x + vn y )dl (udy - vdx ) æ¶ y ö çç dy + ¶ y dx ÷ ÷ çè ¶ y ¶x ÷ ø dy = y B - y A = y 2 - y 1 Properties of Stream Function Streamlines and equipotential lines are always perpendicular to each other Along a streamline ¶y ¶y dy = dx + dy ¶x ¶y = - vdx + udy = 0 ædy ö÷ v çç ÷ = èdx ø÷y u Along an equipotential line ¶f ¶f df = dx + dy ¶x ¶y = udx + vdy = 0 ædy ö÷ u çç ÷ = èdx ø÷f v ædy ö÷ çç ÷ èdx ø÷f ædy ö÷ çç ÷ = - 1 èdx ø÷y Complex Potential Cauchy-Riemann Condition ìï ¶f ¶y ïï u = = ïï ¶x ¶y í ïï ¶f ¶y = ïï v = ¶y ¶x ïî Analytic Function F (z ) = f (x , y ) + i y (x , y ) [z = x + iy ] 3. Fundamental Solutions a. Uniform flow b. Source and sink c. Vortex d. Doublet a. Uniform Flow u=U y v= 0 x ¶u ¶v ¶U + = + 0= 0 ¶x ¶y ¶x ¶v ¶u ¶U = 0= 0 ¶x ¶y ¶y ¶f ¶y = = U ¶x ¶y ¶f ¶y = = 0 ¶y ¶x f = Ux y = Uy ¶f 1 p + (u 2 + v 2 ) + - Y = C ¶t 2 r U2 p + - Y= C 2 r p U2 =C+ Y= C + Y r 2 u = U cos a v = U sin a y U x u = U cos a v = U sin a ¶u ¶v + = 0 ¶x ¶y ¶v ¶u = 0 ¶x ¶y ¶f ¶y = = U cos a ¶x ¶y ¶f ¶y = = U sin a ¶y ¶x f = U (x cos a + y sin a ) y = U (y cos a - x sin a ) b. Source and Sink Source In polar coordinates u r = f (r ) uq = 0 y u r v ur x = r cos q y = r sin q u = u r cos q - u q sin q v = u r sin q + u q cos q x u x2 + y2 x = r cos q r = y = r sin q q = t an - 1 y x ¶r x = = cos q ¶x r ¶r y = = sin q ¶y r ( ) ¶q y sin q = - 2 = ¶x r r ¶q x cos q = 2 = ¶y r r ¶u ¶v æ ¶r ¶ ¶ q ¶ ö÷ + = çç + (u r cos q - u q sin q) ÷ ÷ è ø ¶x ¶y ¶x ¶r ¶x ¶q æ¶ r ¶ ö ¶q ¶ ÷ + çç + ÷ (u r sin q + u q cos q) ÷ çè¶ y ¶ r ¶ y ¶ qø = ¶ ur u 1 ¶ uq + r + ¶r r r ¶q ö ¶v ¶u æ ¶r ¶ ¶q ¶ ÷ = çç + (u r sin q + u q cos q) ÷ ÷ è ø ¶x ¶y ¶x ¶r ¶x ¶q æ¶ r ¶ ö ¶q ¶ ÷ ç - ç + ÷ ÷(u r cos q - u q sin q) çè¶ y ¶ r ¶ y ¶ qø = ¶ u q u q 1 ¶ ur + ¶r r r ¶q ¶u ¶v ¶ ur ur 1 ¶ uq + = + + ¶x ¶y ¶r r r ¶q df (r ) f (r ) = + = 0 dr r f (r ) = c r ¶v ¶u ¶ u q u q 1 ¶ ur = + = 0 ¶x ¶y ¶r r r ¶q u r = f (r ) uq = 0 Discharge Q= ò 2p ò 2p 0 = 0 = 2p c u r rd q c rd q r Q Qx cos q = 2p r 2p (x 2 + y 2 ) Q ur = 2p r u= uq = 0 Q Qy v= sin q = 2p r 2p (x 2 + y 2 ) Q f = log r 2p Q y = q 2p Sink (Q < 0) Source or Sink at (x0,y0) Q f = log 2p ( (x - x ) + (y - y ) ) 2 0 2 0 c. Vortex Vortex In polar coordinates ur = 0 u q = f (r ) ¶u ¶v ¶ ur ur 1 ¶ uq + = + + = 0 ¶x ¶y ¶r r r ¶q ¶v ¶u ¶ u q u q 1 ¶ ur = + ¶x ¶y ¶r r r ¶q df f = + = 0 dr r f (r ) = c r ur = 0 u q = f (r ) Circulation G= ò 2p ò 2p 0 = 0 u qr d q æ cö çç- ÷ r dq ÷ è rø = - 2pc ur = 0 G uq = 2p r G Gy u= sin q = 2p r 2p (x 2 + y 2 ) G Gx v= cos q = 2p r 2p (x 2 + y 2 ) G f = q 2p G y = log r 2p Clockwise Vortex (G < 0) Vortex centered at (x0,y0) G y = log 2p ( (x - x ) + (y - y ) ) 2 0 2 0 c. Doublet y Q +Q x e® 0 Q® ¥ eQ ® pm Velocity Potential f = Q Q log (x + e)2 + y 2 log 2p 2p (x - e )2 + y 2 (x + e )2 + y 2 Q = log 2 (x - e )2 + y 4p é æ e2 ÷ öù Q x e çç ú = log ê1 + 4 2 + O ÷ 2 2 2 ÷ ê çèx + y øú 4p x +y ë û Q = 4p é xe ù æ e2 ö mx ÷ ç ê4 ú + Oç 2 ® 2 ÷ 2 2 2 ÷ ê x +y çèx + y øú x + y 2 ë û y r Stream Function A Q Q Q y = q1 + q2 = [q1 - q2 ] 2p 2p 2p Q AB Q 2e sin q ; ; 2p r 2p r Q 2ey my = ® - 2 2 2 2p x + y x + y2 B x Streamlines my y = - 2 =C 2 x +y m x +y + y= 0 C 2 2 2 2 m m æ ö æ ö ÷ x 2 + ççy + = çç ÷ ÷ ÷ è 2C ø è2C ø 4. Superposition a. Circular Cylinder without Circulation Uniform Flow f = Ux y = Uy mx x2 + y2 mö æ ç = çUr + ÷ ÷cos q è ø r f = Ux + Doublet mx f = 2 x + y2 my y = - 2 x + y2 my x2 + y2 mö æ ç = çUr - ÷ ÷sin q è ø r y = Uy - mö æ ç y = çUr - ÷ sin q ÷ è ø r y = 0 m Ur = 0 r Þ r = sin q = 0 Þ q = 0, p mU æ a2 ÷ ö m÷ æ ö ç f = ççUr + ÷cos q = U çr + ÷ cos q ÷ ç è ø r r ø è æ a 2 ö÷ mö÷ æ y = ççUr - ÷sin q = U ççr sin q ÷ ÷ ç è rø r ø è é a 2 (x 2 - y 2 )ù 2 æ ö ¶f a ê ú ÷ çç1 u= = U ê1 = U cos 2q÷ ú 2 2 ÷ 2 2 ¶x ø êë (x + y ) úû çè r ¶f 2a 2xy Ua 2 v= = - 2 U = - 2 sin 2q 2 2 ¶y r (x + y ) æu ö÷ çç ÷= çèv ø÷ ÷ écos q - sin qùæu r ö ÷ ê úçç ÷ êsin q cos q úèçu q ø÷ ÷ êë úû æu r ö÷ çç ÷= ÷ çèu q ø÷ é cos q sin q ùæu ö ÷ ê úçç ÷ ê- sin q cos qúèçv ø÷ ÷ êë úû æ a2 ÷ ö ç u r = U ç1 - 2 ÷ cos q ÷ çè r ø æ a 2 ö÷ u q = - U çç1 + 2 ÷ sin q ÷ çè r ø On surface of cylinder Velocity ur = 0 u q = - 2U sin q u q = - 2U sin q 2U Stagnation Point 2U r p + u ×u = C 2 Pressure 2 rU 2 2 p¥ + = p + 2rU sin q 2 cp = p - p¥ ( ) 1 2 rU 2 2 = 1 - 4 sin q D’Alembert Paradox r F= 0 Drag due to viscosity ► Skin friction ► Form drag b. Circular Cylinder with Circulation Uniform Flow y = Ur sin q Doublet m sin q y = r æ a2 ÷ ö G r ç y = U çr sin q log ÷ ÷ çè r ø 2p a Vortex G r y = log 2p a æ a2 ÷ ö u r = U çç1 - 2 ÷ cos q ÷ çè r ø æ a 2 ö÷ G u q = - U çç1 + 2 ÷ sin q + çè r ø÷ 2p r On surface of the cylinder ur = 0 G u q = - 2U sin q + 2pa Stagnation point on cylinder ìï ïï G ïï sin q = í 4pUa ïï ïï ïî < 1 2 solut ions = 1 1 solut ion > 1 no solut ion r p + u ×u = C 2 Pressure 2 ö rU ræG ÷ p¥ + = p + çç - 2U sin q÷ ÷ ø 2 2 è2pa 2 cp = 2 æ G ö = 1 - çç - 2 sin q÷ ÷ ÷ 2 è ø 2 p Ua 1 2 rU p - p¥ ( ) Lift r F = - r p p n ( ¥ ) dS ò S = - ò 2p 0 r r (p - p¥ ) i cos q + j sin q a d q ( rU 2a 2 p éê = 1ò ê 0 2 ë r = - rU G j ) 2ù r r æ G ö ú i cos q + j sin q d q çç - 2 sin q÷ ÷ ÷ è2pUa øú û ( )