Download Two-Dimensional Potential Flows

Document related concepts
no text concepts found
Transcript
VII. Analysis of Potential Flows
Contents
1.
Preservation of Irrotationality
2.
Description of 2D Potential Flows
3.
Fundamental Solutions
4.
Superposition
1. Preservation of Irrotationality
r
n
Stokes Theorem
ò
S
r
r
n ×(Ñ ´ u )dS =
Vorticity
r
W
S
r r
òÑu ×dl
C
Circulation
G
C
Kelvin’s Theorem
In the flow of an ideal fluid with constant
density, circulation along a fluid line is
invariant if body force is conservative
t +t
t
C
D G(C )
= 0
Dt
DG D
=
Dt
Dt
r r
òÑu ×dl =
C
D r r
òÑC Dt u ×dl
(
r
r
D r r
Du r r D dl
u ×dl =
×dl + u ×
Dt
Dt
Dt
(
)
)
( )
r
æ
Du
1
pö
÷
ç
= ÑY - Ñ p = Ñ çY - ÷
÷
çè
÷
Dt
r
rø
r
dl
r
r1
r
r2
r
D dl
( )=
Dt
r
r
r
r
D r
(r2 - r1 ) = u 2 - u1 = du
Dt
DG
=
Dt
é æ
ö r r rù
p
÷
êÑ ççY - ÷×dl + u ×du ú
òÑC ê çè r ÷÷ø
ú
ë
û
æ
ö
r
r
p
1
÷
ççY = ò
d
+
u
×
u
÷
ÑC çè r 2 ø÷÷
= 0
A piece of fluid is always irrotational if it is
initially irrotational
2. Description of 2D Potential Flows
2D Flow in x-y plane
w= 0
¶
= 0
¶z
Basic Equations for 2D Potential Flows
¶u ¶v
+
= 0
¶x ¶y
¶v ¶u
= 0
¶x ¶y
ìï ¶ u
¶u
¶u
1 ¶p
ïï
+u
+v
= fx ïï ¶ t
¶x
¶y
r ¶x
í
ïï ¶ v
¶v
¶v
1 ¶p
+
u
+
v
=
f
ïï
y
¶
t
¶
x
¶
y
r ¶y
ïî
¶f
1 2
p
2
+ (u + v ) + - Y = C
¶t
2
r
Velocity Potential
Irrotational flow
¶v ¶u
= 0
¶x ¶y
Definition of Velocity Potential
¶f
u=
;
¶x
¶f
v=
¶y
Continuity Equation
¶u ¶v
+
= 0
¶x ¶y
¶ 2f
¶ 2f
+
= 0
2
2
¶x
¶y
Stream Function
Incompressible fluid
¶u ¶v
+
= 0
¶x ¶y
Definition of Stream Function
¶y
u=
;
¶y
¶y
v= ¶x
Irrotational condition
¶v ¶u
= 0
¶x ¶y
¶ 2y
¶ 2y
+
= 0
2
2
¶x
¶y
Properties of Stream Function
y = constant represents a streamline
y = constant
along y = y (x )
¶y
¶y
dy =
dx +
dy
¶x
¶y
= - vdx + udy = 0
dx
dy
=
u
v
Properties of Stream Function
y2
q
y1
q = y2 - y1
y2
B
r
u
r
n
A
y1
q=
ò
B
ò
B
ò
B
ò
B
A
=
A
=
A
=
A
r r
u ×n dl =
B
ò (un
A
x
+ vn y )dl
(udy - vdx )
æ¶ y
ö
çç dy + ¶ y dx ÷
÷
çè ¶ y
¶x ÷
ø
dy = y B - y A = y 2 - y 1
Properties of Stream Function
Streamlines and equipotential
lines are always perpendicular
to each other
Along a streamline
¶y
¶y
dy =
dx +
dy
¶x
¶y
= - vdx + udy = 0
ædy ö÷
v
çç ÷ =
èdx ø÷y
u
Along an equipotential line
¶f
¶f
df =
dx +
dy
¶x
¶y
= udx + vdy = 0
ædy ö÷
u
çç ÷ = èdx ø÷f
v
ædy ö÷
çç ÷
èdx ø÷f
ædy ö÷
çç ÷ = - 1
èdx ø÷y
Complex Potential
Cauchy-Riemann Condition
ìï
¶f
¶y
ïï u =
=
ïï
¶x
¶y
í
ïï
¶f
¶y
= ïï v =
¶y
¶x
ïî
Analytic Function
F (z ) = f (x , y ) + i y (x , y )
[z = x + iy ]
3. Fundamental Solutions
a.
Uniform flow
b.
Source and sink
c.
Vortex
d.
Doublet
a. Uniform Flow
u=U
y
v= 0
x
¶u ¶v
¶U
+
=
+ 0= 0
¶x ¶y
¶x
¶v ¶u
¶U
= 0= 0
¶x ¶y
¶y
¶f
¶y
=
= U
¶x
¶y
¶f
¶y
= = 0
¶y
¶x
f = Ux
y = Uy
¶f
1
p
+ (u 2 + v 2 ) + - Y = C
¶t
2
r
U2 p
+ - Y= C
2
r
p
U2
=C+ Y= C + Y
r
2
u = U cos a
v = U sin a
y
U

x
u = U cos a
v = U sin a
¶u ¶v
+
= 0
¶x ¶y
¶v ¶u
= 0
¶x ¶y
¶f
¶y
=
= U cos a
¶x
¶y
¶f
¶y
= = U sin a
¶y
¶x
f = U (x cos a + y sin a )
y = U (y cos a - x sin a )
b. Source and Sink
Source
In polar coordinates
u r = f (r )
uq = 0
y
u
r
v
ur
x = r cos q
y = r sin q
u = u r cos q - u q sin q
v = u r sin q + u q cos q
x
u
x2 + y2
x = r cos q
r =
y = r sin q
q = t an - 1 y x
¶r
x
= = cos q
¶x
r
¶r
y
= = sin q
¶y
r
( )
¶q
y
sin q
= - 2 =
¶x
r
r
¶q
x
cos q
= 2 =
¶y
r
r
¶u ¶v æ
¶r ¶
¶ q ¶ ö÷
+
= çç
+
(u r cos q - u q sin q)
÷
÷
è
ø
¶x
¶y
¶x ¶r
¶x ¶q
æ¶ r ¶
ö
¶q ¶ ÷
+ çç
+
÷
(u r sin q + u q cos q)
÷
çè¶ y ¶ r
¶ y ¶ qø
=
¶ ur
u
1 ¶ uq
+ r +
¶r
r
r ¶q
ö
¶v ¶u æ
¶r ¶
¶q ¶ ÷
= çç
+
(u r sin q + u q cos q)
÷
÷
è
ø
¶x ¶y
¶x ¶r ¶x ¶q
æ¶ r ¶
ö
¶q ¶ ÷
ç
- ç
+
÷
÷(u r cos q - u q sin q)
çè¶ y ¶ r
¶ y ¶ qø
=
¶ u q u q 1 ¶ ur
+
¶r
r
r ¶q
¶u ¶v
¶ ur
ur
1 ¶ uq
+
=
+
+
¶x
¶y
¶r
r
r ¶q
df (r ) f (r )
=
+
= 0
dr
r
f
(r ) =
c
r
¶v ¶u
¶ u q u q 1 ¶ ur
=
+
= 0
¶x ¶y
¶r
r
r ¶q
u r = f (r )
uq = 0
Discharge
Q=
ò
2p
ò
2p
0
=
0
= 2p c
u r rd q
c
rd q
r
Q
Qx
cos q =
2p r
2p (x 2 + y 2 )
Q
ur =
2p r
u=
uq = 0
Q
Qy
v=
sin q =
2p r
2p (x 2 + y 2 )
Q
f =
log r
2p
Q
y =
q
2p
Sink (Q < 0)
Source or Sink at (x0,y0)
Q
f =
log
2p
( (x - x ) + (y - y ) )
2
0
2
0
c. Vortex
Vortex
In polar coordinates
ur = 0
u q = f (r )
¶u ¶v
¶ ur ur
1 ¶ uq
+
=
+
+
= 0
¶x ¶y
¶r
r
r ¶q
¶v ¶u
¶ u q u q 1 ¶ ur
=
+
¶x ¶y
¶r
r
r ¶q
df
f
=
+ = 0
dr r
f
(r ) =
c
r
ur = 0
u q = f (r )
Circulation
G=
ò
2p
ò
2p
0
=
0
u qr d q
æ cö
çç- ÷
r dq
÷
è rø
= - 2pc
ur = 0
G
uq = 2p r
G
Gy
u=
sin q =
2p r
2p (x 2 + y 2 )
G
Gx
v= cos q = 2p r
2p (x 2 + y 2 )
G
f =
q
2p
G
y = log r
2p
Clockwise Vortex
(G < 0)
Vortex centered at (x0,y0)
G
y = log
2p
( (x - x ) + (y - y ) )
2
0
2
0
c. Doublet
y
Q
+Q

x

e® 0
Q® ¥
eQ ® pm
Velocity Potential
f =
Q
Q
log (x + e)2 + y 2 log
2p
2p
(x
- e )2 + y 2
(x + e )2 + y 2
Q
=
log
2
(x - e )2 + y
4p
é
æ e2 ÷
öù
Q
x
e
çç
ú
=
log ê1 + 4 2
+
O
÷
2
2
2
÷
ê
çèx + y øú
4p
x +y
ë
û
Q
=
4p
é xe
ù
æ e2 ö
mx
÷
ç
ê4
ú
+ Oç 2
® 2
÷
2
2
2
÷
ê x +y
çèx + y øú x + y 2
ë
û
y
r
Stream Function
A

Q
Q
Q
y = q1 +
q2 = [q1 - q2 ]
2p
2p
2p
Q AB
Q 2e sin q
; ; 2p r
2p
r
Q 2ey
my
= ® - 2
2
2
2p x + y
x + y2


B
x
Streamlines
my
y = - 2
=C
2
x +y
m
x +y + y= 0
C
2
2
2
2
m
m
æ
ö
æ
ö
÷
x 2 + ççy +
= çç ÷
÷
÷
è
2C ø è2C ø
4. Superposition
a. Circular Cylinder without Circulation
Uniform Flow
f = Ux
y = Uy
mx
x2 + y2
mö
æ
ç
= çUr + ÷
÷cos q
è
ø
r
f = Ux +
Doublet
mx
f = 2
x + y2
my
y = - 2
x + y2
my
x2 + y2
mö
æ
ç
= çUr - ÷
÷sin q
è
ø
r
y = Uy -
mö
æ
ç
y = çUr - ÷
sin q
÷
è
ø
r
y = 0
m
Ur = 0
r
Þ
r =
sin q = 0
Þ
q = 0, p
mU
æ a2 ÷
ö
m÷
æ
ö
ç
f = ççUr + ÷cos q = U çr + ÷
cos q
÷
ç
è
ø
r
r ø
è
æ a 2 ö÷
mö÷
æ
y = ççUr - ÷sin q = U ççr sin q
÷
÷
ç
è
rø
r ø
è
é a 2 (x 2 - y 2 )ù
2
æ
ö
¶f
a
ê
ú
÷
çç1 u=
= U ê1 =
U
cos 2q÷
ú
2
2
÷
2
2
¶x
ø
êë
(x + y ) úû çè r
¶f
2a 2xy
Ua 2
v=
= - 2
U = - 2 sin 2q
2 2
¶y
r
(x + y )
æu ö÷
çç ÷=
çèv ø÷
÷
écos q - sin qùæu r ö
÷
ê
úçç ÷
êsin q cos q úèçu q ø÷
÷
êë
úû
æu r ö÷
çç ÷=
÷
çèu q ø÷
é cos q sin q ùæu ö
÷
ê
úçç ÷
ê- sin q cos qúèçv ø÷
÷
êë
úû
æ a2 ÷
ö
ç
u r = U ç1 - 2 ÷
cos q
÷
çè
r ø
æ a 2 ö÷
u q = - U çç1 + 2 ÷
sin q
÷
çè
r ø
On surface of cylinder
Velocity
ur = 0
u q = - 2U sin q
u q = - 2U sin q
2U
Stagnation Point
2U
r
p + u ×u = C
2
Pressure
2
rU
2
2
p¥ +
= p + 2rU sin q
2
cp =
p - p¥
( )
1 2 rU 2
2
= 1 - 4 sin q
D’Alembert Paradox
r
F= 0
Drag due to viscosity
►
Skin friction
►
Form drag
b. Circular Cylinder with Circulation
Uniform Flow
y = Ur sin q
Doublet
m sin q
y = r
æ a2 ÷
ö
G
r
ç
y = U çr sin q log
÷
÷
çè
r ø
2p
a
Vortex
G
r
y = log
2p
a
æ a2 ÷
ö
u r = U çç1 - 2 ÷
cos q
÷
çè
r ø
æ a 2 ö÷
G
u q = - U çç1 + 2 ÷
sin
q
+
çè
r ø÷
2p r
On surface of the cylinder
ur = 0
G
u q = - 2U sin q +
2pa
Stagnation point on cylinder
ìï
ïï
G ïï
sin q =
í
4pUa ïï
ïï
ïî
< 1 2 solut ions
= 1
1 solut ion
> 1 no solut ion
r
p + u ×u = C
2
Pressure
2
ö
rU
ræG
÷
p¥ +
= p + çç
- 2U sin q÷
÷
ø
2
2 è2pa
2
cp =
2
æ G
ö
= 1 - çç
- 2 sin q÷
÷
÷
2
è
ø
2
p
Ua
1 2 rU
p - p¥
( )
Lift
r
F = -
r
p
p
n
(
¥ ) dS
ò
S
= -
ò
2p
0
r
r
(p - p¥ ) i cos q + j sin q a d q
(
rU 2a 2 p éê
= 1ò
ê
0
2
ë
r
= - rU G j
)
2ù
r
r
æ G
ö
ú i cos q + j sin q d q
çç
- 2 sin q÷
÷
÷
è2pUa
øú
û
(
)
Related documents