Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
“Teach A Level Maths” Statistics 1 Linear Functions of a Discrete Random Variable © Christine Crisp Linear Functions of a Discrete Random Variable Statistics 1 Edexcel "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages" Linear Functions of a Discrete Random Variable We have already looked at the effect of scaling ( or coding ) data. If x gives the values of a variable and y is a linear function of that variable, we found the following results: If y ax b, the mean of y changes in the same way, so y ax b However, adding a constant has no effect on the standard deviation, so s y as x If we want variance instead of standard deviation, we square the result giving: s y a 2 s x2 2 Linear Functions of a Discrete Random Variable We get similar results if we are dealing with a discrete random variable ( which is used as a model for the data ). e.g. The probability table for a random variable X is shown below: x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) Solution: (a) E(X) is the alternative notation for the mean, m So, E ( X ) m xP( X x ) 1 0 4 2 0 5 3 0 1 1 7 Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 (b) Find E(4X). We start with a table of values of 4x. x 4x 1 4 2 8 3 12 The probability that 4x = 4 is the same as the probability that x = 1, and so on, so we get Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 (b) Find E(4X). We start with a table of values of 4x. x 4x P(X = x) So, 1 4 0·4 2 8 0·5 3 12 0·1 The probability that 4x = 4 is the same as the probability that x = 1, and so on, so we get E (4 X ) 4 0 4 8 0 5 12 0 1 68 Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 (b) Find E(4X). We start with a table of values of 4x. x 4x P(X = x) So, 1 4 0·4 2 8 0·5 3 12 0·1 The probability that 4x = 4 is the same as the probability that x = 1, and so on, so we get E (4 X ) 4 0 4 8 0 5 12 0 1 68 So, E (4 X ) Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 (b) Find E(4X). We start with a table of values of 4x. x 4x P(X = x) So, 1 4 0·4 2 8 0·5 3 12 0·1 The probability that 4x = 4 is the same as the probability that x = 1, and so on, so we get E (4 X ) 4 0 4 8 0 5 12 0 1 68 So, E (4 X ) 4 E ( X ) Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 E (4 X ) 4 E ( X ) 6 8 (c) E(5) simply means the “expected value of 5” or the mean value of 5. So, E(5) = 5 (d) For E(4X + 5) we need 4x + 5 P(X = x) 9 0·4 13 0·5 17 0·1 So, E (4 X 5) 9 0 4 13 0 5 17 0 1 3 6 6 5 1 7 11 8 E (4 X 5) Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 E (4 X ) 4 E ( X ) 6 8 (c) E(5) simply means the “expected value of 5” or the mean value of 5. So, E(5) = 5 (d) For E(4X + 5) we need 4x + 5 P(X = x) 9 0·4 13 0·5 17 0·1 So, E (4 X 5) 9 0 4 13 0 5 17 0 1 3 6 6 5 1 7 11 8 E (4 X 5) = Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 E (4 X ) 4 E ( X ) 6 8 (c) E(5) simply means the “expected value of 5” or the mean value of 5. So, E(5) = 5 (d) For E(4X + 5) we need 4x + 5 P(X = x) 9 0·4 13 0·5 17 0·1 So, E (4 X 5) 9 0 4 13 0 5 17 0 1 3 6 6 5 1 7 11 8 E (4 X 5) = 4 E ( X ) Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 E (4 X ) 4 E ( X ) 6 8 (c) E(5) simply means the “expected value of 5” or the mean value of 5. So, E(5) = 5 (d) For E(4X + 5) we need 4x + 5 P(X = x) 9 0·4 13 0·5 17 0·1 So, E (4 X 5) 9 0 4 13 0 5 17 0 1 3 6 6 5 1 7 11 8 E (4 X 5) = 4 E ( X ) 5 Linear Functions of a Discrete Random Variable x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) E(X), (b) E(4X), (c) E(5), (d) E(4X + 5) E( X ) 1 7 E (4 X ) 4 E ( X ) 6 8 (c) E(5) simply means the “expected value of 5” or the mean value of 5. So, E(5) = 5 (d) For E(4X + 5) we need 4x + 5 P(X = x) 9 0·4 13 0·5 17 0·1 So, E (4 X 5) 9 0 4 13 0 5 17 0 1 3 6 6 5 1 7 11 8 E (4 X 5) = 4 E ( X ) 5 Linear Functions of a Discrete Random Variable The results we have found can be generalised to give E (aX b) aE( X ) b e.g. The probability distribution for the r.v. X is given by x 2 4 6 8 10 P( X x) 1 12 1 4 5 12 1 6 1 12 Find (a) E(X), (b) Hence find E(2X - 3) Solution: ( X ) of the xP(question X x ) means that we “Hence” in (a) partE(b) 1 1 rather than1using 35 must use the answer to part (a) 2 4 . . . 10 5 56 12 of 42X - 3. 12 6 the values and probabilities 26 35 (b) E ( 2 X - 3) 2 E ( X ) - 3 2 - 3 8 23 6 3 Linear Functions of a Discrete Random Variable Before we can find an expression for Var (aX b) it’s useful to define a new notation for Var ( X ) . We know that Var ( X ) 2 x 2 P ( X x ) - m 2 Using an extension of the notation for xP( X x ) ( i.e. E(X) ), we write E( X 2 ) x 2 P( X x) So, Var( X ) E ( X 2 ) - m 2 This, in turn, can be written as Var( X ) E ( X 2 ) - ( E ( X )) 2 and, because the last term is clumsy, we write Var( X ) E ( X 2 ) - E 2 ( X ) Linear Functions of a Discrete Random Variable We must be very careful if we use Var( X ) E ( X 2 ) - E 2 ( X ) This, . . . is the mean of X 2 and this . . . is the mean of X which has been squared. Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) We already have the following results: E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 (a) Var ( X ) E ( X 2 ) - E 2 ( X ) 2 2 x P ( X x ) m 12 0 4 2 2 0 5 3 2 0 1 - 1 7 2 0 41 (b) Var (5) 0 N.B. Variance measures variability or spread. There is no spread if we just have 5. Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. 4x P(X = x) 4 0·4 8 0·5 12 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 6 56 Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 6 56 16Var ( X ) Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 6 56 16Var ( X ) (d) Var (4 X 5) E (4 X 5) 2 - E 2 (4 X 5) Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. 4x + 5 P(X = x) 9 0·4 13 0·5 17 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 6 56 16Var ( X ) (d) Var (4 X 5) E (4 X 5) 2 - E 2 (4 X 5) 9 2 0 4 132 0 5 172 0 1 - 11 8 2 Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 6 56 16Var ( X ) (d) Var (4 X 5) E (4 X 5) 2 - E 2 (4 X 5) 9 2 0 4 132 0 5 172 0 1 - 11 8 2 6 56 16Var ( X ) Linear Functions of a Discrete Random Variable We’ll now find a formula for Var (aX b) e.g. x P(X = x) 1 0·4 2 0·5 3 0·1 Find (a) Var(X) (b) Var(5) (c) Var(4X) (d) Var(4X+5) E ( X ) 1 7 , E (4 X ) 6 8, E (4 X 5) 11 8 Var ( X ) 0 41 (c) Var (4 X ) E (4 X ) 2 - E 2 (4 X ) 4 2 0 4 8 2 0 5 122 0 1 - 6 8 2 6 56 16Var ( X ) (d) Var (4 X 5) E (4 X 5) 2 - E 2 (4 X 5) 9 2 0 4 132 0 5 172 0 1 - 11 8 2 6 56 16Var ( X ) Linear Functions of a Discrete Random Variable So, Var (4 X 5) 4 2 Var ( X ) The general result is Var (aX b) a 2 Var ( X ) This is just like the rule for coding data: y ax b s y a 2 s x2 2 Multiplying by a constant results in the variance being multiplied by the square of the constant. Adding a constant has no effect on the variance since it does not change the spread of the values. Linear Functions of a Discrete Random Variable SUMMARY The mean of a linear function of a discrete random variable, X, is given by • E (aX b) aE( X ) b • The variance of X, is given by Var ( X ) 2 x 2 P ( X x ) - m 2 which can be written as Var( X ) E ( X 2 ) - E 2 ( X ) • The variance of a linear function of X is given by Var (aX b) a 2 Var ( X ) Linear Functions of a Discrete Random Variable e.g. The probability distribution for the r.v. X is given by x 2 4 6 8 10 P( X x) 1 12 1 4 5 12 1 6 1 12 Find (a) Var(X), (b) Hence find Var(2X - 3) Solution: 35 (a) We already have the result E ( X ) 6 1 1 1 115 2 2 2 2 E ( X ) 2 4 . . . 10 12 4 12 3 2 155 115 35 2 2 - 4 11 So, Var( X ) E ( X ) - E ( X ) 36 3 6 36 155 155 2 (b) Var (2 X - 3) 2 Var ( X ) 4 Var ( X ) 4 17 92 9 36 Linear Functions of a Discrete Random Variable Exercise 1. The probability distribution for the r.v. X is given by x 1 2 3 4 5 P( X x) 0 1 0 2 0 4 0 2 0 1 Find (a) E(X) (b) E(3X + 1) (c) Var(X) (d) Var(3X 1) Solution: (a) E(X) = 3. ( We can get this directly from the symmetry of the table. ) (b) E(3X + 1) = 3E(X) + 1 = 10 (c) Var ( X ) E ( X 2 ) - E 2 ( X ) 12 0 1 2 2 0 2 . . . 5 2 0 1 - 3 2 1 2 (d) Var (3 X 1) 9Var ( X ) 9(1 2) 10 8 Linear Functions of a Discrete Random Variable The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet. Linear Functions of a Discrete Random Variable SUMMARY The mean of a linear function of a discrete random variable, X, is given by • E (aX b) aE( X ) b • The variance of X, is given by Var ( X ) 2 x 2 P ( X x ) - m 2 which can be written as Var( X ) E ( X 2 ) - E 2 ( X ) • The variance of a linear function of X is given by Var (aX b) a 2 Var ( X ) Linear Functions of a Discrete Random Variable e.g. The probability distribution for the r.v. X is given by x 2 4 6 8 10 P( X x) 1 12 1 4 5 12 1 6 1 12 Find (a) E(X) (b) E(2X - 3) (c) Var(X) (d) Var(2X - 3) Solution: (a) E ( X ) xP( X x ) 1 1 1 2 4 . . . 10 12 4 12 35 5 56 6 (b) E (2 X - 3) 2 E ( X ) - 3 35 26 2 - 3 8 23 3 6 Linear Functions of a Discrete Random Variable (c) Var ( X ) E ( X 2 ) - E 2 ( X ) 1 1 1 2 2 E ( X ) 2 4 . . . 10 12 4 12 115 3 2 115 35 So, Var ( X ) - 3 6 155 4 11 36 36 (d) Var ( 2 X - 3) 2 2 Var ( X ) 4Var ( X ) 155 155 4 17 92 36 9 2 2