Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 21
Electric Potential
Conservative force
Conservation of energy
charged
Potential (energy)
+ + + +
Potential
difference
(voltage)
air → conductor
discharge
2
Coulomb force is conservative
Comparing :
m1m2
F G 2
~
r
Q1Q2
F k 2
r
Electrostatic / Coulomb force is conservative
Work doesn’t depend on the path:
W   qE  dl 
L1
 qE  dl

(  E  0 )
 E  dl
0
L2
The circulation theorem of electric field
3
Electric potential
Conservative force → potential energy U
U depends on the charge!
Define electric potential:
V U / q
+
-
Potential difference / voltage:
U a  U b Wab
Vab  Va  Vb 

q
q
4
Electric potential & electric field
Difference in potential energy between a and b:
b
Ub  U a   qE  dl
a
b
 Vba  Vb  Va   E  dl
a
b
a
If position b is the zero point:
Va  
V 0
a
E  dl
Relationship between electric field and potential
Unit of electric potential: Volt (V)
5
Zero point
Electric potential:
Va  
V 0
a
E  dl
It depends on the chosen of zero point
Usually let V = 0 at infinity:

Va   E  dl
a
For the field created by a point charge :
Va  

a
Q
4 0 r
2
 dr 
.a
Q
4 0 ra
Q
6
Properties of electric potential
Va  
V 0
a
E  dl
b
Vba  Vb  Va   E  dl
a
1) Va → potential energy per unit (+) charge
2) Va depends on the zero point, Vba does not
3) Va and Vba are scalars, differ from E vector
U a  qVa  q 
V 0
a
E  dl ,
b
Wab  qVab  q  E  dl
a
7
Calculation of electric potential
If the electric field is known:
Va  
V 0
a
E  dl
Potential of point charge:
V
Q
4 0 r
(V = 0 at infinity)
System of several point charges:
V 
Qi
4 0 ri
or
V 
dQ
A. r
dQ
4 0 r
8
Potential of electric dipole
Example1: (a) Determine the potential at o, a, b.
(b) To move charge q from a to b, how much
work must be done?
Solution: (a) Vo 
Vb 
(b)
Q
4 0l

Q
8 0l

Vba  Vb  Va 
Q
4 0 r

Q
4 0 r
.a
Q
8 0l
Q
8 0l
 0 , Va  0
Q
l.
o
h
l
Q
.b
Qq
 W  qVba 
8 0l
9
Charged conductor sphere
Example2: Determine the potential at a distance r
from the center of a uniformly charged conductor
sphere (Q, R) for (a) r>R; (b) r=R; (c) r < R.
Solution: All charges on surface:
E
Q
4 0 r 2
(r  R), E  0 (r  R)
Va  
r
4 0 r
2
dr 
Q
4 0 r
a
.
+
Q
+
Q
+
+
+
(a) V at r>R:

+
+
+
+
+
Same as point charge
10
(b) V at r=R:
+

Q
R
4 0 r 2
Vb  
dr 
Q
+
4 0 R
Vc   E  dl  Vb  Vb 
c
Q
+
Q
4 0 R
+
.c
+
(c) V at r<R:
b
+ .b
+
+
+
+
Same potential at
any point!
Discussion:
(1) Conductor: equipotential body
(2) Charges on holey conductor
++ +
-
-
-
?
11
Uniformly charged rod
Example3: A thin rod is uniformly charged (λ, L).
Determine the potential for points along the line
outside of the rod.
Solution: Choose infinitesimal charge dQ
Va 

d L
d
 dx
4 0 x

dL

ln
4 0
d
Potential at point b?

.b dx
x
a
dQ
L
d
12
Charged ring
Example4: A thin ring is uniformly charged (Q, R).
Determine the potential on the axis.

Solution: Va 
Ring
or:
Va 
dQ
4 0 r

Q
.a
4 0 r
Q
Q
4 0 x 2  R 2
r
x
dQ
R
Discussion:
(1) Not uniform?
(2) x >> R
(3) other shapes
13
Conical surface
Question: Charges are uniformly distributed on a
conical surface (σ, h, R). Determine the electric
potential at top point a. (V = 0 at infinity)
a
h
R
14
Electrostatic induction
Question: Put a charge q nearby a conductor sphere
initially carrying no charge. Determine the electric
potential on the sphere.
- Q
R
+
+ o
+
+
+
+
q
b
Connect to the ground?
15
*Breakdown voltage
Air can become ionized due to high electric field
Air → conducting → charge flows
Breakdown of air: E  3 106 V / m
Breakdown voltage for a spherical conductor?
V
Q
4 0 R
 ER  R
R  5cm  V  15000V
R
Q
16
Equipotential surfaces
Visualize electric potential: equipotential surfaces
Points on surface → same potential
(1) Surfaces ⊥ field at any point.
(2) Move on surface, no work done
(3) Move along any field line, V ↘
(4) Surfaces dense → strong field
17
Some examples
(1) Equipotential surfaces for dipole system:
(2) Conductors
(3) Parallel but not uniform field lines?
18
E determined from V
To determine electric field from the potential, use
b
Vb  Va   E  dl
a
In differential form:
dV  E  dl   El dl
Component of E in the direction of dl :
El  dV / dl
Total electric field:
V
V
V
E
i
j
k
x
y
z
19
Gradient of V
dV
dV
El  
E
dl
dn
V+dV
n
V
dV
Gradient of V : V 
n
dn
dn
a
dl
b
E
Gradient → partial derivative in
direction V changes most rapidly
V
V
V
E  V  
i
j
k
x
y
z

1
2

V   E  dl
a
20
Determine E from V
Example5: The electric potential in a region of
space varies as V = x2yz. Determine E.
Solution:
V
 2 xyz ,
Ex  
x
V
  x 2 z,
Ey  
y
V
  x2 y
Ez  
z
 E  2 xyzi  x zj  x yk
2
2
21
Determine V from E
Example6: The electric field in space varies as
E  2 xyi  ( x 2  y 2 ) j . Determine V.
Solution:
V
Ex  
 2 xy
x
 V   2 xydx   x y  C ( y )
2
1 3
y C
3
V
dC ( y )
2
 x2  y 2
Ey  
x 
y
dy
1 3
2
( C is constant )
 V  x y  y  C
3
22
Related documents