Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Supplementary Table 10. Potential drug targets in C. hominis Gene Type I fatty acid synthase (CpFAS1) Acetyl-CoA carboxylase Fatty acyl-CoA synthetase (LCFA) Type I polyketide synthase CTP synthase dUTPase Ribonucleotide reductase Inosine 5’ monophosphate dehydrogenase Thymidine kinase Thymidylate synthase-dihydrofolate reductase (TSDHFR) Arginine decarboxylase Spermidine:spermine-N1-acetyltransferase (SSAT) Pyruvate–NADP oxidoreductase (PNO) PPi-phosphofructokinase Glycolitic enzymes (e.g. lactate dehydrogenase) Alternative oxidase (CpAOX) CpATPase3 (Type V P-ATPases) ATP-binding cassette Sugar or nucleotide-sugar transport (12)a Function Fatty acid biosynthesis Fatty acid biosynthesis Fatty acid metabolism Polyketides biosynthesis Nucleotide metabolism Nucleotide metabolism Purine metabolism Nucleotide salvage Nucleotide salvage DNA synthesis ORFs Chro.30258 Chro.80425 Chro.40386 Chro.40330 Chro.50211 Chro.70577 Chro.60090 Chro.60012 Chro.50398 Chro.40506 Ref [1] [2] [3] [4] [5] [5] [6] [7] [7] [8] Polyamine biosynthesis Polyamine biosynthesis Energy metabolism Energy metabolism Energy metabolism Aerobic respiratory chain Transporter system Transporter system Transporter system [9] [9] [10] [11] [5] [12] [13] [14] [15] Amino acid transport (5) a ABC family transport (23) a Transporter system Transporter system NF NF Chro.40087 Chro.20231 Chro.70063 Chro.30354 Chro.20456 Chro.60540 Chro.30458 Chro.20067 Chro.40323 Chro.80431 Chro.20017 Chro.10084 Chro.60540 Chro.60563 Chro.50340 Proteinases (e.g. cryptopain) Host cell invasion Acidocalcisomes related (e.g.Vacuolar H+-ATPase Ca+ Storage subunit D) Anti-oxidant enzymes (e.g thioredoxin reductase) Thioredoxin redox cycle Chro.20464 Membrane protein (e.g. TRAP) Structural Chro.10390 Tubulin Structural Chro.40322 a Number of possible transporters encoded by C. hominis genome, a few ORFs examples are shown; NF, not found. [16] [17] [18; 19] [5;17] [5] [20;21] Reference: [1] Zhu, G. et al. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 134, 127-135 (2004). [2] Zuther, E. et al. Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. U. S. A 96, 13387-13392 (1999). [3] Camero, L. et al. Characterization of a Cryptosporidium parvum gene encoding a protein with homology to long chain fatty acid synthetase. J. Eukaryot. Microbiol. 50 Suppl, 534-538 (2003). [4] Zhu, G. et al. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298, 79-89 (2002) [5] Strong, W. B. & Nelson,R.G. Gene discovery in Cryptosporidium parvum: expressed sequence tags and genome survey sequences. Contrib. Microbiol. 6, 92-115 (2000). [6] Akiyoshi, D. E. et al. Molecular characterization of ribonucleotide reductase from Cryptosporidium parvum. DNA Seq. 13(3), 167-72 (2002). [7] Striepen, B. et al. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc. Natl. Acad. Sci. U. S. A 101, 3154-3159 (2004). [8] Atreya, C. E. & Anderson, K. S. Kinetic characterization of bifunctional thymidylate synthase-dihydrofolate reductase (TSDHFR) from Cryptosporidium hominis: A paradigm shift for TS activity and channeling behavior. J Biol Chem. 30;279(18), 18314-18322 (2004). [9] Keithly, J. S. et al. Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol. Biochem. Parasitol. 88(1-2), 35-42 (1997). [10] Rotte, C. et al. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol. Biol. Evol. 18, 710-720 (2001). [11] Denton, H. et al. Comparison of the phosphofructokinase and pyruvate kinase activities of Cryptosporidium parvum, Eimeria tenella and Toxoplasma gondii. Mol. Biochem. Parasitol. 76(1-2), 23-29 (1996). [12] Suzuki, T. et al. Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: phylogenetic and therapeutic implications. Biochem. Biophys. Res. Commun. 23;313(4), 10441052 (2004). [13] LaGier, M. J. et al. Characterisation of a novel transporter from Cryptosporidium parvum. Int. J. Parasitol. 32(7), 877-887 (2002). [14] Perkins, M. E. et al. Cyclosporin analogs inhibit in vitro growth of Cryptosporidium parvum. Antimicrob. Agents Chemother. 42(4), 843-848 (1998). [15] Blikslager A et al. Glutamine transporter in crypts compensates for loss of villus absorption in bovine cryptosporidiosis. Am. J. Physiol. Gastrointest. Liver Physiol. 281(3):G645-53 (2001). [16] Zapata F. et al. The Cryptosporidium parvum ABC protein family. Mol. Biochem. Parasitol. 120(1):157-161 (2002). [17] Coombs, G. H. & Muller S. Recent advances in the search for new anti-coccidial drugs. Int. J. Parasitol. 32(5), 497-508 (2002). [18] Moreno, B. et al. (31)P NMR of apicomplexans and the effects of risedronate on Cryptosporidium parvum growth. Biochem. Biophys. Res. Commun. 284(3), 632-637 (2001) [19] Moreno, S. N. & Docampo, R. Calcium regulation in protozoan parasites. Curr. Opin. Microbiol. 6(4), 359-64 (2003). [20] Fayer, R. & Fetterer, R. Activity of benzimidazoles against cryptosporidiosis in neonatal BALB/c mice. J. Parasitol. 81(5), 794-795 (1995). [21] Armson, A. et al. A comparison of the effects of two dinitroanilines against Cryptosporidium parvum in vitro and in vivo in neonatal mice and rats. FEMS Immunol. Med. Microbiol. 26(2), 109-13 (1999).