Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Applied Artificial Intelligence in Embedded Systems Keep It Stupid Simple Jan Jacobs Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 2 Current problems(1) SW-HW balance content tch a em size++ lifetime-- h atc lum m o y v it ta ctiv u d da pro dat av mass. parallelism++ pro du ctiv ity olu mi me sm mis atc ma h tch execution time++ Embedded system hardware costs-- co st software development time++ pri ce m ry ve i l de ct atch u d pro mism atc h pricing-- time2market-- products & services Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 3 Current problems(2) light weight flexible arm heavy weight rigid arm Other trends in ES strain gauges motor motor • parsimony (energy, weight, size, ...) • fault tolerance / robustness • multiple (concurrent) goals • deterministic real-time response N • easier design and test • reduction of prior knowledge, and Y • in particular that of world model Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 4 Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 5 sc ie nc e Vision(1) Co m pu SW M ec ha ni cs te r HW ics ys h P ES Question: where is intelligence located? Electro body actuators sensors world Current believe: Conclusion: Embedded Systems (ES) hosts 100% of all intelligence Intelligent behaviour is not exclusively domain of Computer Science (CS) Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 6 Vision(2) Lego Mindstorms: “…intelligence is not a “box” residing inside the brain, but is distributed throughout the organism and requires the interaction with the environment as an essential component” We need new architectural thinking ! Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 7 Vision(3) Hierarchical control (functional units) evaluation, reasoning, planning sensory processing Knowledge base World model behaviour generation Layered Architecture actuators with parallel, loosely coupled processes sensors Reactive control (behavioural units) plan changes identify objects sensors build maps actuators explore avoid Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 8 Agenda • • • • Current problems Vision Self Organising Map (SOM) Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 9 Self Organising Map (SOM) background(1) biological plausibility of topological ordering (Teuvo Kohonen, HUT Finland) Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 10 SOM background(2) SOM training Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 11 SOM background(3) Conclusions Original space SOM map •Self organisation; no prior model •Dimension compression •Mapping preserves structure SOM mapping •Visualisation with topological ordering high dimensional space Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems low(2D) dimensional space 12 Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 13 Social network mapping(1) Search a person without programming Search == browse (2D) + pinpoint (1D) Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 14 Social network mapping(2) Questions: Steps: •How are expertises distributed? 1. train •Who is the expert in this field? 2. use •Who has similar experience? Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 15 Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control COFFEE BREAK • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 16 Anomaly Detection(1) Detect deviating patterns without programming Steps: Question: Can we detect anomalies without knowing machine details? Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 1. acquisition 2. train 3. inspect 17 Anomaly Detection(2) a Power up 5 min Printing state M ea su re C m on en tro t( lle an rs al og ta tu ) s (d ig ita l ) tic st a aly m o n Stand by Standby state Fontys colloquia 4/3, 11/3 printing standby 0 0 printing 1 1 ??? 0 1 ??? 1 0 Applied AI for Embedded Systems anomaly 18 Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 19 Cognitive Actuation(1) Inverse Kinematics α2 α3 α1 Actuation: (α , 0 α1, ...α6) 1 2 3 α4 α5 α0 0 Target: (x,y,z) 4 5 Fontys colloquia 4/3, 11/3 α6 Assignment: control the 7 sliders such that the gripper moves smoothly to the target. 6 Applied AI for Embedded Systems 20 Cognitive Actuation(2) Actuate without modelling •Baby babbling •Randomly select actuation angles •Train SOM (highD 2D) •Use reversely (2D highD) •Solve inverse kinematics problem Cognitive Actuation(3) Actuate without modelling Steps: 1. Train 2. Inspect 3. Use Cognitive Actuation(4) Human arm joint 6D state space 1. shoulder, 40 cm, 0..135o 2. elbow, 40 cm, 0.. 90o 3. wrist, 10 cm, -45..+45o 4. proximal phalanx, 5 cm, 0..90o 5. middle phalanx, 3 cm, 0..90o 6. distal phalanx, carrying the nail, 2 cm, 0..90o Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 23 Cognitive Actuation(5) Graceful degradation without modelling •The arm is “ill” – wear (motor brushes) – slip (joints) – extreme: arm bended, finger missing •But arm is still able to smoothly avoid “painful” areas Cognitive Actuation(6) …and now a shoulder with rheumatism! 1. shoulder, 40 cm, 0..135 90o 2. elbow, 40 cm, 0.. 90o 3. wrist, 10 cm, -45..+45o 4. proximal phalanx, 5 cm, 0..90o 5. middle phalanx, 3 cm, 0..90o 6. distal phalanx, carrying the nail, 2 cm, 0..90o Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 25 Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 26 Subsumption architecture(1) Behavioural layers levels of competence sensors level 2 level 1 motors level 0 Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 27 Subsumption architecture(2) value steered sensory-motor Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 28 Agenda • • • • Current problems Vision Self Organising Map Applications – Social network – Diagnostics / testing – Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 29 Conclusions • “Intelligence” should be distributed through whole machine (not exclusively by Embedded Systems) • The subsumption architecture provides a framework that may result in less complex ES – when? many uncertainties, many dimensions – why? less complex, safety for self / others – where? hard real-time actions (reflexes, no logic) • Promising component: Self Organising Map • SOM acts as a (self-learned) universal 2D format Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 30 Keep IT It Stupid Simple Questions… Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 31 Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 32 Agenda • • • • Current problems Vision Self Organising Map Applications – – – – Social network Document space Diagnostics / testing Robot arm control • Subsumption architecture • Conclusions Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 33 Document mapping(1) Self Organising map (SOM) info source data mining Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems visualisation 34 Document mapping(2) Specification Data mining system subscribed news servers RSS feed • • • • Feature extraction features ~10K byte / article Compression compressed features SOM training 256 byte / article SOM map Visualisation SVG map 16x32x256 byte #articles: 100-1000 (typical 500) data mining: few minutes SOM training: responsive (few seconds) interactive visualisation Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 35 Document mapping(3) Compressed list of High dimensional important words space SOM mapping Low (2D) dimensional space Document map Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 36 Future challenges (1) exciting new theory: embodied intelligence a evolution sensors level 2 level 1 motors level 0 projX mapX projY real time "it's an a"! mapY Embedded Engine Control new interdisciplinary methodology? $--, T--? Fontys colloquia 4/3, 11/3 Document Analysis and Recognition, learning versus programming (complexity), Q++?, robustness? Applied AI for Embedded Systems 37 Future challenges (2) "identity" genotype "partOf" phenotype environment new population Document Management Systems document archiving revisited: use “user” as “environment” in more pro-active DMS (human in loop, office lab) Fontys colloquia 4/3, 11/3 Embodied ontology extraction morphological analyses of neurostructures in global maps, grounding text based ontologies Applied AI for Embedded Systems 38 SOM training algorithm & example for all epochs do decrease α ; decrease σ ; for each sample do compute high dimensional distance(sample, all_neurons); determine winning neuron; compute low dimensional distance(winning_neuron, all_neurons); compute neighbourhood (low dimensional distance,σ ); correct all_neurons = all_neurons + α . neighbourhood . (sample – all_neurons); end end (1) (2) (3) (4) (5) next sample 1 sample==198 winner 2 3 5 4 123 46 84 19 75 152 114 179 3 2 1 2 0 0.25 0.5 0.25 123 84 141 63.75 0 19 200 96 198 179 22 102 2 1 0 1 0.25 0.5 1 0.5 49.5 108.5 198 147 250 23 190 55 52 175 8 143 3 2 1 2 0 0.25 0.5 0.25 250 66.75 194 90.75 97 60 85 143 101 138 113 55 4 3 2 3 0 0 0.25 0 97 60 113.2 5 143 original neuron values (1) high dimensional distance (2) winner selection (3) two dimensional distance (4) neighbourhood = Λ ij (5) updated neuron values decrease α decrease σ next epoch Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 39 Vision(3) •Hard RT responsiveness deteriorated by soft RT behaviour •Difficult to test hardRT softRT hardRT softRT •Lower: hard RT •Higher: focus on the longer term interface of "atomic actions" between soft- and hard-RT •Easy testing hardRT Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 40 Early warning system (printer) What Optimise uptime by “sensing” a printer problem before the machine fails the customer. Smart spectrogram analysis OK not OK How •Add cheap sensors and interprete the vibration signals continuously. • make a fingerprint of an individual engine’s frame vibration time • monitor for deviations in this fingerprint • inform OBS to schedule preventive maintenance to optimise uptime Anomalies frequency Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 41 Image processing with less programming • Image processing by throwing dices • Simulated Annealing Introduction Greyvalue original scan [0..255] Scanned Business Graphics Problems quantisers quality (difficult to compress) computation time Traditional quantisation [0..L-1] (false coloured, e.g. L=4) Fontys colloquia 4/3, 11/3 Question Can massively // computing improve on quality(compression) and performance? Applied AI for Embedded Systems 43 Specification Quantisation module Image Quantisation colour scanner colour image 5K x 7K x 24 bit pixels quantised image 5K x 7K x 2 bit pixels colour image processing printable image colour printer • sizes bitmap: 5,000x7,000 • improved quantisation takes 1 minute (Pentium) Goals (w.r.t. massively parallel implementation) : • improve business graphics quality • faster (few seconds) Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 44 Analysis & Design Complexity O(L colour image quantised image long scripts quantised image throw again colour image Qquant Qimage = W.H ) Based on 2 steps: 1) perceptual optimisation crit. 2) iterate until convergence (by e.g. Simulated Annealing) Markov Random Field ∆E Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 45 How to control loss of information? • fidelity • regularity grey-value Combined in Energy (local): γs pixel s Fontys colloquia 4/3, 11/3 µg pixels Applied AI for Embedded Systems 46 Simulated Annealing Energy energy landscape ∆E local minimum Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems global minimum 47 Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 48 bio neural networks Facts: > 1011 neurons 103 synapses/neuron msec performance/ neuron Source: “Tutorial de Redes Neuronales”, la universidad Politecnica de Madrid Fontys colloquia 4/3, 11/3 Applied AI for Embedded Systems 49