Download Applied Artificial Intelligence in Embedded Systems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Applied Artificial Intelligence in
Embedded Systems
Keep It Stupid Simple
Jan Jacobs
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
2
Current problems(1)
SW-HW
balance
content
tch
a
em
size++
lifetime--
h
atc
lum
m
o
y
v
it
ta
ctiv
u
d
da
pro
dat
av
mass. parallelism++
pro
du
ctiv
ity
olu
mi
me
sm
mis
atc
ma
h
tch
execution time++
Embedded system
hardware
costs--
co
st
software
development time++
pri
ce
m
ry
ve
i
l
de
ct atch
u
d
pro mism
atc
h
pricing--
time2market--
products &
services
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
3
Current problems(2)
light weight flexible arm
heavy weight rigid arm
Other trends in ES
strain gauges
motor
motor
• parsimony (energy, weight, size, ...)
• fault tolerance / robustness
• multiple (concurrent) goals
• deterministic real-time response
N
• easier design and test
• reduction of prior knowledge, and
Y
• in particular that of world model
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
4
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
5
sc
ie
nc
e
Vision(1)
Co
m
pu
SW
M
ec
ha
ni
cs
te
r
HW
ics
ys
h
P
ES
Question:
where is
intelligence
located?
Electro
body
actuators
sensors
world
Current believe:
Conclusion:
Embedded Systems
(ES) hosts 100% of all
intelligence
Intelligent behaviour is
not exclusively domain of
Computer Science (CS)
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
6
Vision(2)
Lego Mindstorms:
“…intelligence is not a “box” residing inside
the brain, but is distributed throughout the
organism and requires the interaction with the
environment as an essential component”
We need new
architectural
thinking !
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
7
Vision(3)
Hierarchical control
(functional units)
evaluation,
reasoning, planning
sensory processing
Knowledge base
World model
behaviour generation
Layered Architecture
actuators
with parallel,
loosely coupled
processes
sensors
Reactive control
(behavioural units)
plan changes
identify objects
sensors
build maps
actuators
explore
avoid
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
8
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map (SOM)
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
9
Self Organising Map (SOM)
background(1)
biological plausibility of topological ordering
(Teuvo Kohonen, HUT Finland)
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
10
SOM background(2)
SOM
training
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
11
SOM background(3)
Conclusions
Original
space
SOM
map
•Self organisation; no prior model
•Dimension compression
•Mapping preserves structure
SOM mapping
•Visualisation with topological
ordering
high
dimensional
space
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
low(2D)
dimensional
space
12
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
13
Social network mapping(1)
Search a person without programming
Search ==
browse (2D)
+
pinpoint (1D)
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
14
Social network mapping(2)
Questions:
Steps:
•How are expertises distributed?
1. train
•Who is the expert in this field?
2. use
•Who has similar experience?
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
15
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
COFFEE
BREAK
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
16
Anomaly Detection(1)
Detect deviating patterns without programming
Steps:
Question:
Can we detect anomalies
without knowing machine
details?
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
1. acquisition
2. train
3. inspect
17
Anomaly Detection(2)
a
Power
up
5 min
Printing
state
M
ea
su
re
C
m
on
en
tro
t(
lle
an
rs
al
og
ta
tu
)
s
(d
ig
ita
l
)
tic
st a
aly
m
o
n
Stand by
Standby
state
Fontys colloquia 4/3, 11/3
printing
standby
0
0
printing
1
1
???
0
1
???
1
0
Applied AI for Embedded Systems
anomaly
18
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
19
Cognitive Actuation(1)
Inverse Kinematics
α2
α3
α1
Actuation:
(α ,
0
α1, ...α6)
1
2
3
α4
α5
α0
0
Target:
(x,y,z)
4
5
Fontys colloquia 4/3, 11/3
α6
Assignment: control the
7 sliders such that the
gripper moves smoothly
to the target.
6
Applied AI for Embedded Systems
20
Cognitive Actuation(2)
Actuate without modelling
•Baby babbling
•Randomly select actuation angles
•Train SOM (highD
2D)
•Use reversely (2D
highD)
•Solve inverse kinematics problem
Cognitive Actuation(3)
Actuate without
modelling
Steps:
1. Train
2. Inspect
3. Use
Cognitive
Actuation(4)
Human arm
joint
6D state space
1. shoulder, 40 cm, 0..135o
2. elbow, 40 cm, 0.. 90o
3. wrist, 10 cm, -45..+45o
4. proximal phalanx, 5 cm, 0..90o
5. middle phalanx, 3 cm, 0..90o
6. distal phalanx, carrying the nail, 2 cm, 0..90o
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
23
Cognitive Actuation(5)
Graceful degradation without modelling
•The arm is “ill”
– wear (motor brushes)
– slip (joints)
– extreme: arm bended, finger missing
•But arm is still able to smoothly avoid “painful” areas
Cognitive
Actuation(6)
…and now a
shoulder with
rheumatism!
1. shoulder, 40 cm, 0..135 90o
2. elbow, 40 cm, 0.. 90o
3. wrist, 10 cm, -45..+45o
4. proximal phalanx, 5 cm, 0..90o
5. middle phalanx, 3 cm, 0..90o
6. distal phalanx, carrying the nail, 2 cm, 0..90o
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
25
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
26
Subsumption architecture(1)
Behavioural layers
levels of competence
sensors
level 2
level 1
motors
level 0
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
27
Subsumption architecture(2)
value steered sensory-motor
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
28
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
– Social network
– Diagnostics / testing
– Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
29
Conclusions
• “Intelligence” should be distributed through whole
machine (not exclusively by Embedded Systems)
• The subsumption architecture provides a
framework that may result in less complex ES
– when? many uncertainties, many dimensions
– why?
less complex, safety for self / others
– where? hard real-time actions (reflexes, no logic)
• Promising component: Self Organising Map
• SOM acts as a (self-learned) universal 2D format
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
30
Keep IT
It Stupid Simple
Questions…
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
31
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
32
Agenda
•
•
•
•
Current problems
Vision
Self Organising Map
Applications
–
–
–
–
Social network
Document space
Diagnostics / testing
Robot arm control
• Subsumption architecture
• Conclusions
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
33
Document mapping(1)
Self Organising map (SOM)
info source
data mining
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
visualisation
34
Document mapping(2)
Specification Data mining system
subscribed
news
servers
RSS
feed
•
•
•
•
Feature
extraction
features
~10K byte /
article
Compression
compressed
features
SOM
training
256 byte /
article
SOM
map
Visualisation
SVG
map
16x32x256 byte
#articles: 100-1000 (typical 500)
data mining: few minutes
SOM training: responsive (few seconds)
interactive visualisation
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
35
Document mapping(3)
Compressed list of
High dimensional important words
space
SOM
mapping
Low (2D) dimensional
space
Document map
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
36
Future challenges (1)
exciting new theory: embodied intelligence
a
evolution
sensors
level 2
level 1
motors
level 0
projX
mapX
projY
real time
"it's an a"!
mapY
Embedded Engine Control
new interdisciplinary
methodology? $--, T--?
Fontys colloquia 4/3, 11/3
Document Analysis and
Recognition, learning versus
programming (complexity), Q++?,
robustness?
Applied AI for Embedded Systems
37
Future challenges (2)
"identity"
genotype
"partOf"
phenotype
environment
new population
Document Management Systems
document archiving revisited: use “user” as
“environment” in more pro-active DMS (human
in loop, office lab)
Fontys colloquia 4/3, 11/3
Embodied ontology extraction
morphological analyses of neurostructures
in global maps, grounding text based
ontologies
Applied AI for Embedded Systems
38
SOM training algorithm & example
for all epochs do
decrease α ; decrease σ ;
for each sample do
compute high dimensional distance(sample, all_neurons);
determine winning neuron;
compute low dimensional distance(winning_neuron, all_neurons);
compute neighbourhood (low dimensional distance,σ );
correct all_neurons = all_neurons + α . neighbourhood . (sample – all_neurons);
end
end
(1)
(2)
(3)
(4)
(5)
next sample
1
sample==198
winner
2
3
5
4
123
46
84
19
75
152
114
179
3
2
1
2
0
0.25
0.5
0.25
123
84
141
63.75
0
19
200
96
198
179
22
102
2
1
0
1
0.25
0.5
1
0.5
49.5
108.5
198
147
250
23
190
55
52
175
8
143
3
2
1
2
0
0.25
0.5
0.25
250
66.75
194
90.75
97
60
85
143
101
138
113
55
4
3
2
3
0
0
0.25
0
97
60
113.2
5
143
original neuron values
(1) high dimensional distance
(2) winner selection
(3) two dimensional distance
(4) neighbourhood =
Λ ij
(5) updated neuron values
decrease α
decrease σ
next epoch
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
39
Vision(3)
•Hard RT responsiveness deteriorated by
soft RT behaviour
•Difficult to test
hardRT
softRT
hardRT
softRT
•Lower: hard RT
•Higher: focus on the
longer term
interface of "atomic actions"
between soft- and hard-RT
•Easy testing
hardRT
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
40
Early warning system (printer)
What
Optimise uptime by “sensing” a printer
problem before the machine fails the
customer.
Smart spectrogram analysis
OK
not OK
How
•Add cheap sensors and interprete
the vibration signals continuously.
• make a fingerprint of an individual
engine’s frame vibration
time
• monitor for deviations in this
fingerprint
• inform OBS to schedule preventive
maintenance to optimise uptime
Anomalies
frequency
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
41
Image processing
with less programming
• Image processing by throwing dices
• Simulated Annealing
Introduction
Greyvalue
original
scan
[0..255]
Scanned Business
Graphics
Problems quantisers
quality (difficult to compress)
computation time
Traditional
quantisation
[0..L-1]
(false
coloured,
e.g. L=4)
Fontys colloquia 4/3, 11/3
Question
Can massively // computing
improve on quality(compression)
and performance?
Applied AI for Embedded Systems
43
Specification Quantisation module
Image
Quantisation
colour
scanner
colour
image
5K x 7K x 24 bit pixels
quantised
image
5K x 7K x 2 bit pixels
colour
image
processing
printable
image
colour
printer
• sizes bitmap: 5,000x7,000
• improved quantisation takes 1 minute (Pentium)
Goals (w.r.t. massively parallel implementation) :
• improve business graphics quality
• faster (few seconds)
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
44
Analysis & Design
Complexity O(L
colour
image
quantised
image
long scripts
quantised
image
throw
again
colour
image
Qquant
Qimage
=
W.H
)
Based on 2 steps:
1) perceptual optimisation crit.
2) iterate until convergence (by e.g. Simulated
Annealing)
Markov Random Field
∆E
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
45
How to control loss of information?
• fidelity
• regularity
grey-value
Combined in Energy (local):
γs
pixel s
Fontys colloquia 4/3, 11/3
µg
pixels
Applied AI for Embedded Systems
46
Simulated Annealing
Energy
energy
landscape
∆E
local
minimum
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
global
minimum
47
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
48
bio neural networks
Facts:
> 1011 neurons
103 synapses/neuron
msec performance/
neuron
Source: “Tutorial de Redes
Neuronales”, la universidad
Politecnica de Madrid
Fontys colloquia 4/3, 11/3
Applied AI for Embedded Systems
49
Related documents