Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter
37
The Normal
Probability
Distribution
2010 reserved
Pearson Prentice Hall. All rights reserved
© 2010 Pearson Prentice Hall. All©rights
Section 7.2 The Standard Normal Distribution
© 2010 Pearson Prentice Hall. All rights reserved
7-2
© 2010 Pearson Prentice Hall. All rights reserved
7-3
© 2010 Pearson Prentice Hall. All rights reserved
7-4
© 2010 Pearson Prentice Hall. All rights reserved
7-5
© 2010 Pearson Prentice Hall. All rights reserved
7-6
The table gives the area under the standard normal curve for
values to the left of a specified Z-score, zo, as shown in the
figure.
© 2010 Pearson Prentice Hall. All rights reserved
7-7
EXAMPLE
Finding the Area Under the Standard Normal Curve
Find the area under the standard normal curve to the left of z = -0.38.
Area left of z = -0.38 is 0.3520.
© 2010 Pearson Prentice Hall. All rights reserved
7-8
Area under the normal curve to the
right of zo = 1 – Area to the left of zo
© 2010 Pearson Prentice Hall. All rights reserved
7-9
EXAMPLE
Finding the Area Under the Standard Normal Curve
Find the area under the standard normal curve to the right of Z = 1.25.
Area right of 1.25 = 1 – area left of 1.25
= 1 – 0.8944
= 0.1056 © 2010 Pearson Prentice Hall. All rights reserved
7-10
EXAMPLE
Finding the Area Under the Standard Normal Curve
Find the area under the standard normal curve between z = -1.02 and z = 2.94.
Area between -1.02 and 2.94 = (Area left of z = 2.94) – (area left of z = -1.02)
= 0.9984 – 0.1539
= 0.8445
© 2010 Pearson Prentice Hall. All rights reserved
7-11
© 2010 Pearson Prentice Hall. All rights reserved
7-12
© 2010 Pearson Prentice Hall. All rights reserved
7-13
EXAMPLE
Finding a z-score from a Specified Area to the Left
Find the z-score such that the area to the left of the z-score is 0.7157.
The z-score such that the area to the left of the z-score is 0.7157 is z = 0.57.
© 2010 Pearson Prentice Hall. All rights reserved
7-14
EXAMPLE
Finding a z-score from a Specified Area to the Right
Find the z-score such that the area to the right of the z-score is 0.3021.
The area left of the z-score is 1 – 0.3021 = 0.6979.
The approximate z-score that corresponds to an area of 0.6979 to the left (0.3021
to the right) is 0.52. Therefore, z = 0.52.
© 2010 Pearson Prentice Hall. All rights reserved
7-15
EXAMPLE
Finding a z-score from a Specified Area
Find the z-scores that separate the middle 80% of the area under the normal curve
from the 20% in the tails.
Area = 0.8
Area = 0.1
Area = 0.1
z1 is the z-score such that the area left is 0.1, so z1 = -1.28.
z2 is the z-score such that the area left is 0.9, so z2 = 1.28.
© 2010 Pearson Prentice Hall. All rights reserved
7-16
The notation zα (prounounced “z sub alpha”) is the z-score such that
the area under the standard normal curve to the right of zα is α.
© 2010 Pearson Prentice Hall. All rights reserved
7-17
EXAMPLE
Finding the Value of z
Find the value of z0.25
We are looking for the z-value such that the area to the right of the z-value is
0.25. This means that the area left of the z-value is 0.75.
z0.25 = 0.67
© 2010 Pearson Prentice Hall. All rights reserved
7-18
© 2010 Pearson Prentice Hall. All rights reserved
7-19
Notation for the Probability of a Standard Normal Random
Variable
P(a < Z < b)
represents the probability a standard
normal random variable is between
a and b
P(Z > a)
represents the probability a standard
normal random variable is greater
than a.
P(Z < a)
represents the probability a standard
normal random variable is less than a.
© 2010 Pearson Prentice Hall. All rights reserved
7-20
EXAMPLE
Finding Probabilities of Standard Normal Random Variables
Find each of the following probabilities:
(a) P(Z < -0.23)
(b) P(Z > 1.93)
(c) P(0.65 < Z < 2.10)
(a) P(Z < -0.23) = 0.4090
(b) P(Z > 1.93) = 0.0268
(c) P(0.65 < Z < 2.10) = 0.2399
© 2010 Pearson Prentice Hall. All rights reserved
7-21
For any continuous random variable, the probability of observing a specific
value of the random variable is 0. For example, for a standard normal
random variable, P(a) = 0 for any value of a. This is because there is no area
under the standard normal curve associated with a single value, so the
probability must be 0. Therefore, the following probabilities are equivalent:
P(a < Z < b) = P(a < Z < b) = P(a < Z < b) = P(a < Z < b)
© 2010 Pearson Prentice Hall. All rights reserved
7-22