Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Using Fundamental Identities Objectives: 1. Recognize and write the fundamental trigonometric identities 2. Use the fundamental trigonometric identities to evaluate trigonometric functions, simplify trigonometric expressions, and rewrite trigonometric expressions WHY??? Fundamental trigonometric identities can be used to simplify trigonometric expressions. Fundamental Trigonometric Identities Reciprocal Identities 1 sin u csc u 1 csc u sin u 1 cos u sec u 1 sec u cos u 1 tan u cot 1 cot u tan u Quotient Identities sin u tan u cosu cosu cot u sin u Fundamental Trigonometric Identities Pythagorean Identities sin 2 u cos 2 u 1 1 tan 2 u sec 2 u 1 cot 2 u csc 2 u Even/Odd Identities sin( u) sin u csc(u) csc u cos(u) cosu sec(u) sec u tan(u) tan u cot(u) cot(u) Fundamental Trigonometric Identities Cofunction Identities sin u= cos u 2 tan u cot u 2 sec u csc u 2 cos u sin u 2 cot u tan u 2 csc u sec u 2 Example: If and Ө is in quadrant II, find each function value. a) sec Ө To find the value of this function, look for an identity that relates tangent and secant. Tip: Use Pythagorean Identities. Example: If and Ө is in quadrant II, find each function value. (Cont.) b) sin Ө Tip: Use Quotient Identities. c) cot ( Ө ) Tip: Use Reciprocal and Negative-Angle Identities. 7 Example: 1 Use the values sin x and 2 cos x > 0 and identities to find the values of all six trigonometric functions. What quadrant will you use? 1st quadrant 1 1 csc x 2 sin x 1 / 2 sin x cos x 1 2 2 2 1 1 3 cos x 1 1 4 4 2 2 3 cos x 2 2 2 3 1 sec x 3 cos x 3 1 sin x 3 1 2 tan x cos x 3 3 3 2 1 3 cot x 3 tan x 1 Your Turn: Using Identities to Evaluate a Function Use the given values to evaluate the remaining trigonometric functions (You can also draw a right triangle) 3 1. sec u , tan u 0 2 2. csc 5,cos 0 3 3 3. tan x ,cos x 3 2 Solution: #1 Quadrant III 2 cos 3 5 sin 3 5 tan 2 3 5 csc 5 2 5 cot 5 Solution: #2 Negative y-axis 1 sin 5 tan undefined sec undefined cot 0 Solution: #3 Quadrant III 1 sin x 2 csc x 2 2 3 sec x 3 cot x 3 Simplify an Expression Simplify cot x cos x + sin x to a single trigonometric function. cos x cot x sin x cos x cos 2 x cos x sin x sin x sin x sin x cos 2 x sin 2 x 1 csc x sin x sin x Example: Simplify Simplify cos x csc x csc x 1. Factor csc x out of the expression. 2 csc x cos x 1 2 csc x cos x 1 2 2. Use Pythagorean identities to simplify the expression in the parentheses. sin x cos x 1 2 2 sin x cos x 1 2 2 csc x sin x 2 csc x sin x 2 3. Use Reciprocal identities to simplify the expression. 1 2 sin x sin x sin x sin x sin x 2 Your Turn: Simplifying a Trigonometric Expression 1. sin x cos x sin x 2 2. sec 2 x(1 sin 2 x) 2 tan x 3. 2 sec x Solutions: 1. sin x cos x sin x sin x 2 2. sec 2 x(1 sin 2 x) 1 2 tan x 2 3. sin x 2 sec x 3 Factoring Trigonometric Expressions 2 sec 1 -Factor the same way you would factor any quadratic. - If it helps replace the “trig” word with x -Factor sec 1 the same way you 2 would factor x 1 2 x 1 (x 1)(x 1) so sec (sec 1)(sec 1) 2 2 Example: 2csc x 7 csc x 6 2 Make it an easier problem. Let a = csc x 2a2 – 7a + 6 (2a – 3)(a – 2) Now substitute csc x for a. 2csc x 3 csc x 2 Example: Factor sec x 3tanx 1. 2 1. Use Pythagorean identities to get one trigonometric function in the expression. 2 2 sec x tan x 1. tan 2 x 1 3tanx 1 tan x 3tanx 2 2 2. Now factor. tan x 2 tan x 1 Your Turn: Factoring Trigonometric Expressions 1. 4 tan tan 3 2 2. csc x cot x 3 2 Solutions: 1. 4 tan 2 tan 3 4 tan 3 tan 1 2. csc2 x cot x 3 cot x 2 cot x 1 Your Turn: Factor and simplify 1. sin x csc x sin x 2 2 2 2. 1 2cos x cos x 2 4 Solutions: 1. sin x csc x sin x cos x 2 2 2 2 2. 1 2cos x cos x sin x 2 4 4 Adding Trigonometric Expressions (Common Denominator) sin cos 1 cos sin sin 2 cos 2 1 sin sin cos (1 cos ) sin 1 cos sin (1 cos ) (sin )(sin ) (cos )(1 cos ) sin 2 cos cos2 (1 cos )(sin ) (1 cos )(sin ) 1 cos (1 cos )(sin ) 1 sin csc Your Turn: Adding Trigonometric Expressions 1 1 1. sec x 1 sec x 1 2 sec x 2. tan x tan x Solutions: 1 1 2 1. 2cot x sec x 1 sec x 1 2 sec x 2. tan x cot x tan x Rewriting a Trigonometric Expression so it is not in Fractional Form 1 1 sin x 1 sin x 1 2 1 sin x 1 sin x 1 sin x 1 sin x 1 sin x 1 sin x 2 2 cos x cos x cos 2 x 1 sin x 1 2 cos x cos x cos x sec x tan x sec x 2 Your Turn: Rewriting a Trigonometric Expression 5 1. tan x sec x Solution: 5 1. 5sec x 5tan x tan x sec x Trigonometric Substitution 4 x x 2 tan 2 4 2 tan 2 4 4tan 2 4(1 tan 2 ) 4sec2 2sec 64 16 x 2 x 2cos 64 16 2cos 2 64 16 4cos 2 64 64cos2 64 1 cos 2 64sin 2 8sin Your Turn: 1. x2 4 x 2sec 2. x 2 100 x 10 tan Solutions: 1. x 2 4 2 tan x 2sec 2. x 2 100 10sec x 10 tan Assignment: Sec 5.1 pg. 357 – 359: #1 – 13 odd, 15 – 26 all, 27 71 odd, 81 -91 odd