Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Algebraic Properties Algebraic properties of equality are used in geometry. They help to solve problems and provide justification for each step. Algebraic Properties Reflexive Property a=a Symmetric Property If a = b, then b = a. Transitive Property If a = b and b = c, then a = c. Addition Property If a = b, then a + c = b + c Subtraction Property If a = b, then a – c = b - c Multiplication Property If a b, then a c b c Division Property If a b, a b then . c c Substitution Property If a = b and a = c, then b = c. If a = b and x = 2a + 4, then x = 2b + 4. Distributive Property a(b + c) = ab + ac Combine like terms – combine terms on one side of an equation. Reflexive, Symmetric, and Transitive Properties have corresponding properties of congruence Name the property that justifies each statement. b). mABC = mABC Reflexive Property 9 e. If 2x = 9, then x = . 2 Division Property b. If 12 = AB, then AB = 12. Symmetric Property d. If y = 75 and y = mA, then mA = 75. Substitution Property c. If AB = BC, and BC = CD, then AB = CD. Transitive Property 1. Name the property that justifies each statement. a. If AB + BC = DE + BC, then AB = DE. Subtraction Property x d. If 5, then x 15. 3 Multiplication Property c. If XY = PQ and XY = RS, then PQ = RS. Substitution Property 2. Name the property that justifies each statement. a. If 3x = 120, then x = 40. Division Property 3. What is the value of x? Justify each step. (2x + 30)° x° O A M C 1. AOM and MOC are supplementary Angles that form a linear pair are supplementary. 2. mAOM + mMOC = 180° If two angles are supplementary, they add to 180°. (2x + 30) + x = 180° Substitution Property 3x + 30 = 180° 3x = 150° x = 50° 4. What is the value of x? Justify each step. R x° Given: AB bisects RAN AB bisects RAN Given A B (2x – 75)° N mRAB = mBAN A bisector divides an angle into 2 congruent angles. x = 2x – 75 Substitution Property -x = -75 x = 75