Download Solution - Career Launcher

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematics
Session
Complex Numbers
Session Objectives
Session Objective
1. Polar form of a complex number
2. Euler form of a complex number
3. Representation of z1+z2, z1-z2
4. Representation of z1.z2, z1/z2
5. De-Moivre theorem
6. Cube roots of unity with properties
7. Nth root of unity with properties
Representation of complex number in
Polar or Trigonometric form
z = x + iy
z

x
y
x y 
i
2
2
 x2  y2
x

y

2
2
Y
z(x,y)
x2  y2
y

O




x
X
This you
have learnt
in the first
session
Representation of complex number in
Polar or Trigonometric form
x2  y2  r
x
x
  cos  ,
r
x2  y2
y
x2  y2

y
 sin 
r
z = r (cos  + i sin )
where r | z | and   arg  z 
z(x,y)
Y
r
Examples: 1 = cos0 + isin0
-1 = cos  + i sin 
i = cos /2 + i sin /2
-i = cos (-/2) + i sin (-/2)

O x = rcos
y =rsin
X
Eulers form of a complex number
z = x + iy
z = r (cos  + i sin )
z  rei where ei  cos   i sin 
| ei |  cos2   sin2   1
| z | | r || ei |  r
z  r  cos   i sin    rei
Examples:
i0
i
i

2
1  e ,  1  e ,i  e ,  i  e
i

2
Express 1 – i in polar
form, and then in
euler form
i 


 1

1 i  2 

  2  cos 4  isin 4 
2


 2

i

 
  
 2  cos     i sin      2e 4
 4
 4 

Properties of eulers form ei
ei  cos   i sin 
| ei |  cos2   sin2   1
z | z |ei arg z remember this
 cos a  i sin a  cosb  i sinb   eiaeib
i a b
 e    cos  a  b   i sin  a  b 
eia  eib   cos a  i sin a   cosb  i sinb 
ab
ab
ab
 2 cos 
cos

i
sin

2
2 
 2 
a b
ab i 2
 2 cos 
e

 2 
ab i
e  e  2i sin 
e
2


ia
ib
a b
2
Illustrative Problem
The value of ii is ____
a) 2
b) e-/2
c) 
d) 2
Solution:
i = cos(/2) + i sin(/2) = ei/2
ii = (ei/2)i = e-/2
Now find  i
Ans :  i

i i
Illustrative Problem
Find the value of loge(-1).
Solution:
-1 = cos  + i sin  = ei
loge(-1) = logeei = i
General value: i(2n+1), nZ
As cos(2n+1) + isin(2n+1) = -1
Illustrative Problem
If z and w are two non zero complex
numbers such that |zw| = 1, and
Arg(z) – Arg(w) = /2, then z w is
equal to
a) i
b) –i
c) 1
d) –1
Solution
By eulers form z | z | eiArg(z)
iArg zw 
zw | zw | e
| zw | | z || w |  | z || w |  | zw |  1(given)
 

Arg zw  Arg z  Arg  w    Arg  z   Arg  w   
zw  e
i

2
i

2
Representation of z1+z2
z1 = x1 + iy1, z2 = x2 + iy2
z = z1 + z2 = x1 + x2 + i(y1 + y2)
z2(x2,y2)
z(x1+x2,y1+y2)
Note OAz2  z1Bz
z1(x1,y1)
O
A
B
Oz1 + z1z  Oz
ie |z1| + |z2|  |z1 + z2|
Representation of z1-z2
z1 = x1 + iy1, z2 = x2 + iy2
z = z1 - z2 = x1 - x2 + i(y1 - y2)
z2(x2,y2)
z1(x1,y1)
O
-z2(-x2,-y2)
Oz + z1z  Oz1
ie |z1-z2| + |z2|  |z1|
also |z1-z2| + |z1|  |z2|
 |z1-z2|  ||z1| - |z2||
z(x1-x2,y1-y2)
Representation of z1.z2
z1 = r1ei1, z2 = r2ei2
z = z1.z2 = r1r2ei(1+ 2)
| z1z2 | r1r2 | z1 || z2 |
Arg  z1z2   1  2  Arg  z1   Arg  z2 
Y
r1r2ei(1+ 2)
1+ 2
r2ei2
O
2
1
r1ei1
x
Representation of z1.ei and z1.e-i
z1 = r1ei1
z = z1. ei = r1ei(1+ )
| z |  r1 and Arg  z   1  
Y
r1ei(1+ )

O
1 
r1ei1
r1ei(1- )
What about
z1e-i
x
Representation of z1/z2
z1 = r1ei1, z2 = r2ei2
z = z1/z2 = r1/r2ei(1- 2)
z1 r1 z1
z
 
z 2 r2 z 2
 z1 
Arg  z   Arg    1  2  Arg  z1   Arg  z 2 
 z2 
2
r1ei1
1
r2ei2
r1/r2ei(1- 2)
1- 2
Illustrative Problem
If z1 and z2 be two roots of the
equation z2 + az + b = 0, z being
complex. Further, assume that the
origin, z1 and z2 form an
equilateral triangle, then
a) a2 = 3b
b) a2 = 4b
c) a2 = b
d) a2 = 2b
Solution
z2 = z1ei /3
/3
z1

Sum z1  z2  z1  z1ei / 3  z1 ei0  ei / 3
 i 6
 2z1 cos e  a
6
i
Pr oduct z1z2  z12e

3
.......I
b
i
Squaring I we get 3z12e

3
 a2
Hence a2 = 3b

De Moivre’s Theorem
1) n  Z,
 cos   i sin  
n
 cosn  i sinn
 cos   i sin    cosn  i sinn
n
 cos a  i sin a
m
 cos a  i sin a
n
 cos b  i sinb 
m
 cosb  i sinb   cos ma  nb   i sin ma  nb 
n
 cos ma  nb   i sin ma  nb 
De Moivre’s Theorem
2) n  Q,
cos n + i sin n is one of the
values of (cos  + i sin )n
n  p /q
 cos   i sin  
p/q
  cosp  i sinp 
1/q
  cos  p  2k   i sin  p  2k  
1/ q
2k  p
2k  p
 cos
 i sin
,k  1,2,..., q  1
q
q
Particular case
 cos   i sin  
1/n
 cos
2k  
2k  
 i sin
,k  0,1,2,...,n  1
n
n
Illustrative Problem
7
2
2
 cos5  i sin 5   cos   i sin  
7
7 

Simplify
3
1
2
2


 cos 4  i sin 4  4  cos   i sin  
3
3 

2
5
Solution:
 cos   i sin  
2
5 5

 cos   i sin 
  cos   i sin  
 cos3  isin3
4

7
2


7
cos


i
sin







1
2 3


4
3
cos


i
sin







2  2 1 2
  cos   i sin  
3
Illustrative Problem
Pr ove that : 1  i   1  i   2
n
n
n
1
2
 n 
cos  
 4 
Solution:



1  i  2  cos  i sin 
4
4




1  i  2  cos  isin 
4
4

1  i 
n
1  i 
n
n
n 

 2  cos
 i sin 
4
4 

n
2
 1  i 
n
1  i 
n
n
n 

 2  cos
 i sin 
4
4 

n
1
n
n
2
 2 2cos
 2 cos
4
4
n
2
n
2
Cube roots of unity
1
3
x  1 or x3  1


x3  1  0 or  x  1 x2  x  1  0
1  i 3 1  i 3
,
2
2
2
or x  1, ,  or 1, 2 , 
 x  1,
2
i
1  i 3 1
3
2
2


i
 cos
 i sin
e3
2
2
2
3
3
2
i
1  i 3 1
3
2
2
 

i
 cos
 i sin
e 3
2
2
2
3
3
2
Find using (cos0 + isin0)1/3
2
 1  i 3   1  i 3 
Note : 
 

2
2

 

2
 1  i 3   1  i 3 
and 
 

2
2

 

Properties of cube roots of unity
1    2  0
1..2  3  1
|  | | 2 |  1
1
2
2


,



,


2

4 2
3 3

1,, 2 are the vertices of
equilateral triangle and lie on unit
circle |z| = 1
Why
so?
O
2
1
Illustrative Problem
If  is a complex number such that
2++1 = 0, then 31 is
a) 1
b) 0
c) 2
d) 
Solution
2    1  0

1  i 3
  or 2
2
let   , 31  31    
or    ,    
2
31

2 31
 62  2  
Nth roots of unity
1
n
x  1   cos 0  i sin0 
1
n
2k
2k
 cos
 isin
,k  0,1,...,n  1
n
n
k  0, x  1  ei0
2
i
2
2
k  1, x  cos
 i sin
e n 
n
n
4
i
4
4
k  2, x  cos
 i sin
 e n  2
n
n
.
.
k  n  1, x  cos
2 n  1 
n
 i sin
2 n  1 
n
i
e
2n1
n
  n1
Properties of Nth roots of unity
a) 1      .....  
2
b) 1.. 2...... n1  
n1
n  1

0
 1
n1n
2
  1
n1
1
n is odd
  1 n is even
c) Roots are in G.P
d) Roots are the vertices of n
sided regular polygon lying on
unit circle |z| = 1
3
2
4/n

1 2/n
n-1
Illustrative Problem
Find fourth roots of unity.
Solution:
1
4
x 1
  cos 0  isin 0 
1
4
2k
2k
 isin
, k  0,1, 2,3
4
4
k  0, x  cos 0  isin 0 1
 cos


k  1, x  cos  isin  i
2
2
k  2, x  cos   isin   1
3
3
k  3, x  cos  i sin
 i
2
2
i
-1
1
-i
Illustrative Problem
 1
Find
3
4
in eulers form.
Solution:
 1
3
4
  cos   i sin  
3
4
  cos3  isin 3 
1
4
2k  3
2k  3 

  cos
 i sin
 , k  0,1, 2,3
4
4


e
i
3
4
,e
i
5
4
,e
i
7
4
,e
i
9
4
e
i

4
Class Exercise
Class Exercise - 1
Express each of the following
complex numbers in polar form
and hence in eulers form.
(a)  6  2 i
(b) –3 i
Solution
1.
(a)
r | 6
  tan1
2i | 
2
+
 2 

 6 6
i
7
7 

 6  2i  2 2  cos  isin   2 2 e
6
6

62 2
7
6
(–6, –2 )
 7
=
6
6
Solution Cont.
b) –3i
r  3i  0  9  3
3 

0
2
3
i
3
3 

–3i  3  cos
 isin   3e 2
2
2 

  tan
1
3
2
–3i
Class Exercise - 2
If z1 and z2 are non-zero complex
numbers such that |z1 + z2| = |z1| + |z2|
then arg(z1) – arg (z2) is equal to


(a) –
(b) 
(c) 0
(d)
2
2
Solution
| z  z |  | z |  | z | (triangle inequality)
1 2
1
2
| z |  | z | | z  z |
1
2
1 2
z1 and z2 are in the same line
z1 and z2 have same argument or
their difference is multiple of 2
arg (z1) – arg (z2) = 0 or 2n in general
Class Exercise - 3
Find the area of the triangle on the
argand diagram formed by the
complex numbers z, iz and z + iz.
Solution
We have to find the area of PQR. Note
that OPQR is a square as OP = |z| =
|iz| = OR and all angles are 90°
1
Area of PQR  area of square OPQR
2
1
1
 OP2  | z |2
2
2
Y
Q (Z + iZ)
R (iZ)
P (Z)
O
X
Class Exercise - 4
50
3 i 3 
 325 (x  iy), where
If  2  2 


x and y are real, then the ordered pair
(x, y) is given by ___.
 3 1
a) 
,
 2 2 


 1
3
c) 
,
 2 2 


1 3
b)  ,
 2 2 


 3 1 
d) 
,

 2
2

Solution
50
50
50


3


3

i
3
3

i
50
 325 
  i
  ( 3) 

 2 
2
2
2






50
50






25
3 i
 325 
   3  cos  isin 
 2 2
6
6





 
25
25 



25
25

3
cos
8



isin
8


 3  cos
 isin



3 
3  
3
3 






 


 325 cos  8    isin  8    
3
3 






 325  cos  isin 
3
3

= 325 (x + iy)
x  cos
 1

3 2
y  sin

3

3
2
Class Exercise - 5
If cos   cos   cos   0  sin   sin   sin 
then prove that
cos3  cos3  cos3  3cos(     )
sin3  sin3  sin3  3sin       
Solution
Let x  cos   isin 
y  cos   isin 
z  cos   isin 
x + y + z = (cos   cos   cos  )  i(sin   sin   sin  )
= 0 + i0 = 0
x3 + y3 + z3 – 3xyz
= (x + y + z) (x2 + y2 + z2 – xy – yz – zx) = 0
x3 + y3 + z3 = 3xyz
Solution Cont.
x3 + y3 + z3 = 3xyz
 (cos   isin )3  (cos   isin )3  (cos   isin  )3
 3 cos(     )  isin(     )
comparing real part cos3  cos3  cos3   3cos(     )
comparing imaginary part sin3  sin3  sin3   3 sin       
Class Exercise - 6
1
 2cos  and
x
yn
y
If x 
1
 2cos , then
y
xm
is equal to ___.

yn xm
a)2cos     
b)2cos(m  n)
c)2cos(m – n)
d) 0
Solution
x
1
 2cos 
x
x2  2cos  x  1  0
2cos   4cos2   4
x
2

2cos   2isin 
2
Take any one of the values say
x  cos   isin 
 cos   isin 
Solution Cont.
x  cos   isin 
Similarly y  cos   isin 
xm yn (cos   isin )m (cos   isin )n




yn xm (cos   isin )n (cos   isin )m
 cos  m – n   isin m – n 
 cos  n  m   isin  n  m 
 2cos  m  n 
Class Exercise - 7
The value of the expression
1(2  )(2  2 )  ...  (n  1)(n  )(n  2 ),
where  is an imaginary cube root
of unity is ___.
Solution
n
2
 (r  1)(r  )(r   )
r2
n
  (r  1)(r 2  (  2 )r  3 )
r2
n
n 3
2
  (r  1)(r  r  1)   (r  1)
r2
r2
n 3
n
n 3
n
  r   1   r –  1
r 1
r 1
r2
r2

2
n2  n  1
4
n
Class Exercise - 8
If are the cube roots of p, p < 0, then
for any x, y, z, x  y  z is equal to
x  y  z
(a) 1
(b) 
(c) 2 (d) None of these
Solution
1
x  p3 , p  0
1 1
1
 p 3 , p 3 , p 3 2
1
say   p 3 ,   ,    2
x  y  z x  y  z2

x  y  z x  y2  z
 2

  2
2  z
x


y



x  y2  z
Class Exercise - 9
6 
2k
2k 
The value of   sin
– icos

7
7


k 1
(a) –1
(b) 0
(c) i
(d) –i
is
Solution:
6 
2k
2k 
– icos
  sin

7
7


k 1
6 
2k
2k 
 –i   cos
 isin

7
7


k 1
...(i)
roots of x7 – 1 = 0 are
cos
2k
2k
 isin , k = 0, 1, …, 6
7
7
6 
2k
2k 
 isin
0
  cos

7
7 
k  0
Solution Cont.
6 
2k
2k 
 isin
0
  cos

7
7 
k  0
6 
2k
2k 
1    cos
 isin
0

7
7 
k  1
6 
2k
2k 
 isin
 –1 ...(ii)
  cos

7
7 
k  1
From (i) and (ii), we get
6 
2k
2k 
– icos
 (–i)(–1)  i
  sin

7
7 
k  1
Class Exercise - 10
If 1, , 2,..., n  1 are the roots of
the equation xn – 1 = 0, then the
argument of 2 is
2
8
(a)
(b) 4 (c) 6 (d)
n
n
n
n
Solution:
Y
2

2
n
O

2
n
X
1
As nth root of unity are the
vertices of n sided regular
polygon with each side
making an angle of 2/n at
the centre, 2 makes an
angle of 4/n with x axis and
hence, arg(2) = 4/n
Thank you
Related documents