Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Mathematics Session Complex Numbers Session Objectives Session Objective 1. Polar form of a complex number 2. Euler form of a complex number 3. Representation of z1+z2, z1-z2 4. Representation of z1.z2, z1/z2 5. De-Moivre theorem 6. Cube roots of unity with properties 7. Nth root of unity with properties Representation of complex number in Polar or Trigonometric form z = x + iy z x y x y i 2 2 x2 y2 x y 2 2 Y z(x,y) x2 y2 y O x X This you have learnt in the first session Representation of complex number in Polar or Trigonometric form x2 y2 r x x cos , r x2 y2 y x2 y2 y sin r z = r (cos + i sin ) where r | z | and arg z z(x,y) Y r Examples: 1 = cos0 + isin0 -1 = cos + i sin i = cos /2 + i sin /2 -i = cos (-/2) + i sin (-/2) O x = rcos y =rsin X Eulers form of a complex number z = x + iy z = r (cos + i sin ) z rei where ei cos i sin | ei | cos2 sin2 1 | z | | r || ei | r z r cos i sin rei Examples: i0 i i 2 1 e , 1 e ,i e , i e i 2 Express 1 – i in polar form, and then in euler form i 1 1 i 2 2 cos 4 isin 4 2 2 i 2 cos i sin 2e 4 4 4 Properties of eulers form ei ei cos i sin | ei | cos2 sin2 1 z | z |ei arg z remember this cos a i sin a cosb i sinb eiaeib i a b e cos a b i sin a b eia eib cos a i sin a cosb i sinb ab ab ab 2 cos cos i sin 2 2 2 a b ab i 2 2 cos e 2 ab i e e 2i sin e 2 ia ib a b 2 Illustrative Problem The value of ii is ____ a) 2 b) e-/2 c) d) 2 Solution: i = cos(/2) + i sin(/2) = ei/2 ii = (ei/2)i = e-/2 Now find i Ans : i i i Illustrative Problem Find the value of loge(-1). Solution: -1 = cos + i sin = ei loge(-1) = logeei = i General value: i(2n+1), nZ As cos(2n+1) + isin(2n+1) = -1 Illustrative Problem If z and w are two non zero complex numbers such that |zw| = 1, and Arg(z) – Arg(w) = /2, then z w is equal to a) i b) –i c) 1 d) –1 Solution By eulers form z | z | eiArg(z) iArg zw zw | zw | e | zw | | z || w | | z || w | | zw | 1(given) Arg zw Arg z Arg w Arg z Arg w zw e i 2 i 2 Representation of z1+z2 z1 = x1 + iy1, z2 = x2 + iy2 z = z1 + z2 = x1 + x2 + i(y1 + y2) z2(x2,y2) z(x1+x2,y1+y2) Note OAz2 z1Bz z1(x1,y1) O A B Oz1 + z1z Oz ie |z1| + |z2| |z1 + z2| Representation of z1-z2 z1 = x1 + iy1, z2 = x2 + iy2 z = z1 - z2 = x1 - x2 + i(y1 - y2) z2(x2,y2) z1(x1,y1) O -z2(-x2,-y2) Oz + z1z Oz1 ie |z1-z2| + |z2| |z1| also |z1-z2| + |z1| |z2| |z1-z2| ||z1| - |z2|| z(x1-x2,y1-y2) Representation of z1.z2 z1 = r1ei1, z2 = r2ei2 z = z1.z2 = r1r2ei(1+ 2) | z1z2 | r1r2 | z1 || z2 | Arg z1z2 1 2 Arg z1 Arg z2 Y r1r2ei(1+ 2) 1+ 2 r2ei2 O 2 1 r1ei1 x Representation of z1.ei and z1.e-i z1 = r1ei1 z = z1. ei = r1ei(1+ ) | z | r1 and Arg z 1 Y r1ei(1+ ) O 1 r1ei1 r1ei(1- ) What about z1e-i x Representation of z1/z2 z1 = r1ei1, z2 = r2ei2 z = z1/z2 = r1/r2ei(1- 2) z1 r1 z1 z z 2 r2 z 2 z1 Arg z Arg 1 2 Arg z1 Arg z 2 z2 2 r1ei1 1 r2ei2 r1/r2ei(1- 2) 1- 2 Illustrative Problem If z1 and z2 be two roots of the equation z2 + az + b = 0, z being complex. Further, assume that the origin, z1 and z2 form an equilateral triangle, then a) a2 = 3b b) a2 = 4b c) a2 = b d) a2 = 2b Solution z2 = z1ei /3 /3 z1 Sum z1 z2 z1 z1ei / 3 z1 ei0 ei / 3 i 6 2z1 cos e a 6 i Pr oduct z1z2 z12e 3 .......I b i Squaring I we get 3z12e 3 a2 Hence a2 = 3b De Moivre’s Theorem 1) n Z, cos i sin n cosn i sinn cos i sin cosn i sinn n cos a i sin a m cos a i sin a n cos b i sinb m cosb i sinb cos ma nb i sin ma nb n cos ma nb i sin ma nb De Moivre’s Theorem 2) n Q, cos n + i sin n is one of the values of (cos + i sin )n n p /q cos i sin p/q cosp i sinp 1/q cos p 2k i sin p 2k 1/ q 2k p 2k p cos i sin ,k 1,2,..., q 1 q q Particular case cos i sin 1/n cos 2k 2k i sin ,k 0,1,2,...,n 1 n n Illustrative Problem 7 2 2 cos5 i sin 5 cos i sin 7 7 Simplify 3 1 2 2 cos 4 i sin 4 4 cos i sin 3 3 2 5 Solution: cos i sin 2 5 5 cos i sin cos i sin cos3 isin3 4 7 2 7 cos i sin 1 2 3 4 3 cos i sin 2 2 1 2 cos i sin 3 Illustrative Problem Pr ove that : 1 i 1 i 2 n n n 1 2 n cos 4 Solution: 1 i 2 cos i sin 4 4 1 i 2 cos isin 4 4 1 i n 1 i n n n 2 cos i sin 4 4 n 2 1 i n 1 i n n n 2 cos i sin 4 4 n 1 n n 2 2 2cos 2 cos 4 4 n 2 n 2 Cube roots of unity 1 3 x 1 or x3 1 x3 1 0 or x 1 x2 x 1 0 1 i 3 1 i 3 , 2 2 2 or x 1, , or 1, 2 , x 1, 2 i 1 i 3 1 3 2 2 i cos i sin e3 2 2 2 3 3 2 i 1 i 3 1 3 2 2 i cos i sin e 3 2 2 2 3 3 2 Find using (cos0 + isin0)1/3 2 1 i 3 1 i 3 Note : 2 2 2 1 i 3 1 i 3 and 2 2 Properties of cube roots of unity 1 2 0 1..2 3 1 | | | 2 | 1 1 2 2 , , 2 4 2 3 3 1,, 2 are the vertices of equilateral triangle and lie on unit circle |z| = 1 Why so? O 2 1 Illustrative Problem If is a complex number such that 2++1 = 0, then 31 is a) 1 b) 0 c) 2 d) Solution 2 1 0 1 i 3 or 2 2 let , 31 31 or , 2 31 2 31 62 2 Nth roots of unity 1 n x 1 cos 0 i sin0 1 n 2k 2k cos isin ,k 0,1,...,n 1 n n k 0, x 1 ei0 2 i 2 2 k 1, x cos i sin e n n n 4 i 4 4 k 2, x cos i sin e n 2 n n . . k n 1, x cos 2 n 1 n i sin 2 n 1 n i e 2n1 n n1 Properties of Nth roots of unity a) 1 ..... 2 b) 1.. 2...... n1 n1 n 1 0 1 n1n 2 1 n1 1 n is odd 1 n is even c) Roots are in G.P d) Roots are the vertices of n sided regular polygon lying on unit circle |z| = 1 3 2 4/n 1 2/n n-1 Illustrative Problem Find fourth roots of unity. Solution: 1 4 x 1 cos 0 isin 0 1 4 2k 2k isin , k 0,1, 2,3 4 4 k 0, x cos 0 isin 0 1 cos k 1, x cos isin i 2 2 k 2, x cos isin 1 3 3 k 3, x cos i sin i 2 2 i -1 1 -i Illustrative Problem 1 Find 3 4 in eulers form. Solution: 1 3 4 cos i sin 3 4 cos3 isin 3 1 4 2k 3 2k 3 cos i sin , k 0,1, 2,3 4 4 e i 3 4 ,e i 5 4 ,e i 7 4 ,e i 9 4 e i 4 Class Exercise Class Exercise - 1 Express each of the following complex numbers in polar form and hence in eulers form. (a) 6 2 i (b) –3 i Solution 1. (a) r | 6 tan1 2i | 2 + 2 6 6 i 7 7 6 2i 2 2 cos isin 2 2 e 6 6 62 2 7 6 (–6, –2 ) 7 = 6 6 Solution Cont. b) –3i r 3i 0 9 3 3 0 2 3 i 3 3 –3i 3 cos isin 3e 2 2 2 tan 1 3 2 –3i Class Exercise - 2 If z1 and z2 are non-zero complex numbers such that |z1 + z2| = |z1| + |z2| then arg(z1) – arg (z2) is equal to (a) – (b) (c) 0 (d) 2 2 Solution | z z | | z | | z | (triangle inequality) 1 2 1 2 | z | | z | | z z | 1 2 1 2 z1 and z2 are in the same line z1 and z2 have same argument or their difference is multiple of 2 arg (z1) – arg (z2) = 0 or 2n in general Class Exercise - 3 Find the area of the triangle on the argand diagram formed by the complex numbers z, iz and z + iz. Solution We have to find the area of PQR. Note that OPQR is a square as OP = |z| = |iz| = OR and all angles are 90° 1 Area of PQR area of square OPQR 2 1 1 OP2 | z |2 2 2 Y Q (Z + iZ) R (iZ) P (Z) O X Class Exercise - 4 50 3 i 3 325 (x iy), where If 2 2 x and y are real, then the ordered pair (x, y) is given by ___. 3 1 a) , 2 2 1 3 c) , 2 2 1 3 b) , 2 2 3 1 d) , 2 2 Solution 50 50 50 3 3 i 3 3 i 50 325 i ( 3) 2 2 2 2 50 50 25 3 i 325 3 cos isin 2 2 6 6 25 25 25 25 3 cos 8 isin 8 3 cos isin 3 3 3 3 325 cos 8 isin 8 3 3 325 cos isin 3 3 = 325 (x + iy) x cos 1 3 2 y sin 3 3 2 Class Exercise - 5 If cos cos cos 0 sin sin sin then prove that cos3 cos3 cos3 3cos( ) sin3 sin3 sin3 3sin Solution Let x cos isin y cos isin z cos isin x + y + z = (cos cos cos ) i(sin sin sin ) = 0 + i0 = 0 x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) = 0 x3 + y3 + z3 = 3xyz Solution Cont. x3 + y3 + z3 = 3xyz (cos isin )3 (cos isin )3 (cos isin )3 3 cos( ) isin( ) comparing real part cos3 cos3 cos3 3cos( ) comparing imaginary part sin3 sin3 sin3 3 sin Class Exercise - 6 1 2cos and x yn y If x 1 2cos , then y xm is equal to ___. yn xm a)2cos b)2cos(m n) c)2cos(m – n) d) 0 Solution x 1 2cos x x2 2cos x 1 0 2cos 4cos2 4 x 2 2cos 2isin 2 Take any one of the values say x cos isin cos isin Solution Cont. x cos isin Similarly y cos isin xm yn (cos isin )m (cos isin )n yn xm (cos isin )n (cos isin )m cos m – n isin m – n cos n m isin n m 2cos m n Class Exercise - 7 The value of the expression 1(2 )(2 2 ) ... (n 1)(n )(n 2 ), where is an imaginary cube root of unity is ___. Solution n 2 (r 1)(r )(r ) r2 n (r 1)(r 2 ( 2 )r 3 ) r2 n n 3 2 (r 1)(r r 1) (r 1) r2 r2 n 3 n n 3 n r 1 r – 1 r 1 r 1 r2 r2 2 n2 n 1 4 n Class Exercise - 8 If are the cube roots of p, p < 0, then for any x, y, z, x y z is equal to x y z (a) 1 (b) (c) 2 (d) None of these Solution 1 x p3 , p 0 1 1 1 p 3 , p 3 , p 3 2 1 say p 3 , , 2 x y z x y z2 x y z x y2 z 2 2 2 z x y x y2 z Class Exercise - 9 6 2k 2k The value of sin – icos 7 7 k 1 (a) –1 (b) 0 (c) i (d) –i is Solution: 6 2k 2k – icos sin 7 7 k 1 6 2k 2k –i cos isin 7 7 k 1 ...(i) roots of x7 – 1 = 0 are cos 2k 2k isin , k = 0, 1, …, 6 7 7 6 2k 2k isin 0 cos 7 7 k 0 Solution Cont. 6 2k 2k isin 0 cos 7 7 k 0 6 2k 2k 1 cos isin 0 7 7 k 1 6 2k 2k isin –1 ...(ii) cos 7 7 k 1 From (i) and (ii), we get 6 2k 2k – icos (–i)(–1) i sin 7 7 k 1 Class Exercise - 10 If 1, , 2,..., n 1 are the roots of the equation xn – 1 = 0, then the argument of 2 is 2 8 (a) (b) 4 (c) 6 (d) n n n n Solution: Y 2 2 n O 2 n X 1 As nth root of unity are the vertices of n sided regular polygon with each side making an angle of 2/n at the centre, 2 makes an angle of 4/n with x axis and hence, arg(2) = 4/n Thank you