Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Index Concepts 5 2 = 22222 index/exponent base (5 times) n a a a … a a = (n times) a to the power n” “ 記住:a zero Law of positive integral indices Class Activity 1 23 x 24 = (2 x 2 x 2) x (2 x 2 x 2 x 2) = 23+4 = 27 a2 x a3 = (a x a) x (a x a x a) = a2+3 = a5 b5 x b4 = (b x b x b x b x b) x (b x b x b x b) = b5+4 = b9 am an = a a … a a a … a (m times) (n times) a am an = a (maxn… times) am an = am + n law 1 Class Activity 2 3 3 3 3 3 3 5 2 = =3 2 3 3 3 5 a6 a a a a a a 6 3 = =3 3 a aaa a aa 1 = = 5 2 5 a aaaaa 3 2 a aaa 1 = = 6 3 6 a aaaaaa 3 3 a aaaaa 5 1 a = = 1 a a 5 a aaaaa 53 = = a 3 a aaa 5 1 aaaaa a 1 = 7 5 = 2 = 7 aaaaaaa a a a 5 a m a = 1 n a nm a mn , where m > n and a 0 Law 2 , where m < n and a 0 EXAMPLE 1 – Simplify the following expressions (a) a7.a3 = a7+3 = a10 n.a3 = an+3 a (b) (c) (d) a9 9-2 = a 2 a 7 a = 1 1 a = = 4 3 4 a a a 3 Class Activity (23)2 = (2 2 2) (2 2 2) = 232= 26 (a4)3 = (a a a a) (a a a a) (a a a a) = a43= a12 (b3)5=(bbb) (bbb) (bbb) (bbb) (bbb)=b35= a15 (a ) = m n a m a m a m a m n times of am (a ) = m n (aa…a) (aa…a) …… (aa…a) nm times of a (a ) = a m n nm Law 3 Example 2- Simplify the following expressions (a) (b) (c) 5 2 (a ) = 52 a = 10 a n 3 (a ) = n3 a = 3n a 4 m 4m (a ) = a =a4m Classwork- Simplify the following expressions 12 4 3 43 (1) (x ) = x = x (2) (xn)6= xn6= x6n (3) (x5)m= x5m= x5m Class Activity (2 3)4= (2 3) (2 3) (2 3) (2 3) =(2 2 2 2)(3 3 3 3) =24 34 (3 5)5=(3 5)(3 5)(3 5)(3 5) (3 5) =(3 3 3 3 3)(5 5 5 5 5) =35 55 (ab)3= (a b) (a b) (a b) =(a a a) (b b b) =a3 b3 (ab)m= (a b) (a b)…. (a b) m times of ab (ab)m= (a a … a) (b b … b) m times of a (ab)m= am bn m times of b Law 4 2 ( ) 3 4 = 2 2 2 2 3 3 3 3 = 2 2 2 2 3 3 3 3 4 = 3 3 3 3 3 3 3 3 3 3 3 ( )= = 5 5 5 5 5 5 5 5 5 5 5 5 2 4 3 5 3 = 5 5 a a a a aaa a = = ( )= 3 b b b b bbb b a n a a a a a a a a a n ( ) = = b b b b b b b b b = b n a 3 3 n a n a ( ) = n b b (n times of ( ) n = b (where b 0) Law 5 EXAMPLE 3: Simplify the following expressions (a) (3a)3= (b) (c) 33a3= 27a3 a 4 = a4 ( ) 4 2 2 = a4 16 2a23 ( 2a)2 3 23( a)2 3 8a6 = = ( ) = 3 3 3 b b b b Classwork 1.3 (1) (2x)5= 25x5= 32x5 (2) 10 5)2 2 5 2 ( 4 x 16 x (3) 4 x 2 4 ( x ) ( ) = 2 2 = 22 = 4 y2 ( y ) ( y ) y 5 x 3= x3 ( ) 3 4 4 = x3 64 EXAMPLE 4: Simplify the following expressions 3 3 3 3 3 3 2 a (2ab) 2 a b 8 a b a = = = = 2 4 2 4 2 4 4 3 2b 16a b 16a b 16a b 2b 2 n 1 2 n 1 2 n 1 3 3 1 3 3 = 2 n1 = 2 n 2 = ( 2 n 2 ) ( 2 n 1) = n 1 (3 ) 3 3 9 3 3 (a) (b) n2 (c) 3 3 3n.32 3n 9.3n 3n 8.3n = = = =4 n n n n 2.3 2.3 2.3 2 .3 n Classwork 1.4 1. 3 (5 xy) 53 x 3 y 3 125 x 3 y 3 2 3 2 31 = = = 5 x . y = 5 x. y 2 2 2 25 x y 25 x y 25 x y 3 5 5 3 5 15 5 5 15 4 11 32 x y 2 x (2 x y ) 2x 2 .( x ) . y = = = = 3 2 2 2 4 2 4 8 8 5 2 4 2 2. (4 x y ) 4 .( x ) .( y ) 16 x y y y 5 3. n 3 5 n 3.5 n 1 (120)5 5 .5 5 .5 (5 5)5 = = = = n n n 3.5 3.5 3.5 n 3 n 1 3 n n 40 Exercise 1A Level 1 (1b) a2.a3.a4=a2+3+4=a9 (2b) 1 a6 1 = 106 = 4 10 a a a (3b) (x7)3 =x73 =x21 (4b) (4a2)3 =43. (a2)3=64. a23 =64. a6 Exercise 1A Level 2 5 6 a (5b) = 3 4 2a .a 3a 5 = 34 a (6b) (2b2)3(4b3)2= 3 3a 5 = = 7 5 a a7 3 2 a 23.(b2)3. 42(b3)2 =23.(b2)3. 42(b3)2 =8. b6. 16b6 =8. 16 b6. b6 =128 b6+6 =128 b12 (7b) 4 3 4 3 x y x 4 y 3 x x x y ( 2) ( ) = 2 4 3 = = = 8 3 5 8 3 (y ) x y x y y y x 4 3 (8b) 2 3 4 4 2 4 3 4 4 8 12 abc (ab c ) a (b ) (c ) = = abc abc abc 4 1 81 121 =a b c =a b c 3 7 11 (9b) 3n 3 n 1 1 3n 1 2 .2 2 .2 2 = 3n = 2 = n 3 n 2 2 8 (10b) n 1 3 n 1 3 n 2.3 1 n 1 1 3 . 3 3 . 3 3 .( 3 3 ) = = n n 2.3 2.3 n 1 n 1 (3 3 ) = 2 1 1 (3 3 ) 4 = = 3 2 1 Mistakes students always make 23 54= (2 5) 7= 10 7 Wrong ! since these numbers has no common base. 3 46= 126 Wrong ! 4 6 2 = 2 2 3 (x3)2= x3+2= 3a.2a=5a since these numbers has no common base. x5 aaaaa a = 1 = 5 aaaaa a 5 ∵ a 55 =a 0 a =1 0 Thus, a = 1 (where a 0) 0 Law 6 3 a 1 1 = = 5 5 3 2 a a a From Law 2 3 a 3 5 2 = a = a 5 a ∴ Thus a 2 a Any integer m and n 1 = 2 a m 1 = m a Law 7 Example 5- Evaluate the following expressions 1 1 (a) (-2)-3 = 1 (2) 3 (b) (c) = = 8 8 1 1 2 -2 ( ) = 22 = 4 = 9 ( ) 3 4 3 9 (3-3)2(20) 2 = 1 2 (1) = 1 1 1 = ( 3) = 6 32 3 (3) 3 729 Classwork 1.5 1 1 1. (4) = = 3 64 4 1 1 1 2.(5) 3 = = = 3 125 125 (5) 3 3 0 1 1 1 27 4 1 1 = = 1 = 3 3. = 3 64 4 4 64 3 2 3 27 3 3 3 2 6 1 ( 2 ) 1 2 4. = = = 0 6 0 64 3 2 3 Example 6 - Simplify the following expressions and express your answers in positive indices (a) x 4 .x1 x 1 3 (b) 2 . p 2 =x 4 1 ( 3) =2 p 1 2 ( 1) = x = 1 ( 3) 0 3 3 1 3 3 p q = = q 2 pq 1 3 p q 2 4 2 b c 4 4 2 2 2 2 2 1 2 (c)(a2b 2c 1) 2=(a ) (b ) (c ) =a b c = 4 a Classwork 1.6 3 2 (1) (2) (3) (4) aa 3 ( 2 ) ( 1) 3 2 1 2 = a = a = a 1 a 1 3 1 3 1 3 x .x 3 x .x 1 2 31 2 = = 3 x 2 2 2 (3 x) 3 x 1 1 3 4 =3 x = 3 4 = 4 3 x 27 x 1 2 1 (a b ) 2 b 1 1 2 1 (a ) (b ) = 2 b 1 2 ab = 2 =a b 2 ab (a b c ) = (a ) (b ) (c ) = a b c = 3 c 1 2 3 1 1 1 2 1 3 1 1 2 3 Example 7: Simplify the following expressions and express your answers in positive indices (a) 2 3 2 1 2 2 (a b ) (a b ) 4 6 = (a b )(a b ) 6 4 4 2 = (a a )(b b ) [2( x 2 y) ] [ 3 6 a =a b = a b = 10 b 1 3 y 1 6 3 6 3 1 =2 x y = 6 = 2x y 2x 4 2 6 4 (b) 2 4 ] 6 10 Classwork 1.7 (1) 3 2 2 2 1 3 6 4 6 3 (x y ) (x y ) = x y x y = x x y y 12 66 43 12 1 x = x y =x y = y (2) 2 1 1 3 2 1 1 2 2 2 6 (2 xy ) (3x y ) = 2 x y .3 x y 1 2 1 2 2 6 =2 3 x x y y 12 2 6 x y = 2 2.3 4 x xy = = 4 18y 18 6 6 4 3 3 [( x 3 y) ] = [x y ] 2 2 6 2 2 =x y 12 4 4 12 x = 4 y 2 025 2 3 ab ab (b ) (2a b) (8b ) = b 2 a b 8 b = 2 = 2 .8 32 3 0 1 2 5 1 0 2 2 2 1 5 Additional example 4 4 4 4 8 x .x x x ( x y ) ( x y ) = ( x y )( x y ) = 8 2 = 8 2 = 10 y .y y y 1 2 4 2 4 8 4 2 3 2 2 2 2 2 2 3 4 = [3 (5 x y ) (2 y ) ] 1 (5 x y ) (2 y ) 0 1 1 2 4 2 4 2 25 x y = 3 4 (2 y ) 25x y = 12 16 y 4 25 x = 122 y 25 x 4 = 10 y Exercise 1B (1b) (3 ) = 1 2 0 2 1 (1c) 3 2 1 1 1 16 ( ) = = 2 = = 3 2 3 9 4 9 ( ) 2 4 16 4 a a 2 1( 3) 2 1 3 0 =a =a = a =1 3 a (4b) (a 2b 3 ) 1 = a 21b 31 = a 2b3 4 8a 2 5 6 2 2 ( 5) 6 ( 2 ) 3 4 (5a) = 8b a = (4a b )(2a b ) = 4 . 2 . b a b3 2 4 4 2 (6a) ( 4) x 16 x .2 x 2 0 2 1 2 2 1 = (4 x y ) ( x y ) = 2 2 y 2 y 4 2 6 2 x 32 x 32 x 2 = = 2 2 y y (3b) 1.4 SIMPLE EXPONENTIAL EQUATIONS Equation involves unknowns in the exponents (a0, a1, a-1) a2x=ax 2x a = 1 x a a 2x x =a 2x-x=0 ∴ x=0 0 Example 8: Solve the following exponential equations (a) 6x=1 6x=60 ∴ x=0 (b) 2x=8 2x=23 ∴ x=3 Classwork 1.8 (2) (1) 11x=1 11x=110 ∴ x=0 3x=81 3x=34 ∴ x=4 (3) 4x=256 4x=44 ∴ x=4 2.13x=2 13x=1 13x=130 ∴ x=0 (4) Example 9: Solve the following exponential equations 2x+1=8x-2 (b) 4 2x=625 5 (a) (22)2x+1=(23 )x-2 22(2x+1)=23(x-2) 52x=54 244x+2=23x-6 2x=4 ∴ x=2 4x+2=3x-6 4x-3x=-6-2 ∴ x=-8 Classwork 1.9 (1) 32x=81 (3) (2) 32x=34 2x=4 ∴ x=2 42x=256 42x=44 2x=4 ∴ x=2 82x=16x+4 (23)2x=(24) x+4 26x=24(x+4) 26x=24x+16 6x=4x+16 6x-4x=16 2x=16 ∴ x=8 (4) 94x-1=272x+4 (32)4x-1=(33) 2x+4 32(4x-1)=33(2x+4) 38x-2=26x+12 8x-2=6x+12 8x-6x=12+2 2x=14 ∴ x=7 Example 10: Solve the following exponential equations 3 x2 3 24 = 0 x 32.3x 3x 24 = 0 9.3 3 24 = 0 x x 8.3 24 = 0 x 8.3 = 24 x 3x = 3 3 =3 x ∴ x =1 1 Classwork 1.10 - Solve the following exponential equations (1) (1) 2 x4 3(2 ) 104 = 0 x 3 x 3 3 x 1 216 = 0 2 .2 3(2 ) 104 = 0 32.3x 1 3x 1 216 = 0 16(2 ) 3(2 ) 104 = 0 9.3x 1 3x 1 216 = 0 8.3 x 1 = 216 x 4 x x x 13(2 ) = 104 x 3 2 =8 x 2 =2 x ∴ 3 x=3 ∴ x 1 = 27 3 x 1 = 33 x 1 = 3 x=2 Scientific Notation科學記數法 In scientific world, we often study objects which are very large or very small e.g. Mass of an element of hydrogen is 0.000 000 000 000 000 167 724 567 kg. Velocity of light = 300 000 000 m/s Difficult to read and write!!! To overcome, we use a method called scientific notation to express these numbers approximately 0.000 000 000 000 000 167 724 567 = 1.68 1016 corr. to 3 sig fig 300 000 000 = 3 108 kg 25870945830231 = 2.59 10 13 corr. to 3 sig fig Positive number N can be expressed as N = d 10n, where n is an integer and 1 d < 10. Example 11- express the following numbers in scientific notation (a) 0.000 001 = 1 0.000 001 = 1 10-6 (b) 18 000 = 1.8 10 000 = 1 104 (c) 2 000 000 = 2 1 000 000 = 2 106 (d) 0.000 216 = 2.16 0. 000 1 = 2.16 10-4 (e) 345 104 = 3.45 100 104 = 3.45 102 104 = 3.45 106 (f) 0.050 2 10-3 = 5.02 0.01 10-3 = 5.02 10-2 10-3 = 5.02 10-5 Classwork 1.1- express the following numbers in scientific notation (1) 3 740 000 = 3.74 100 000 = 1 106 (2) 0.000 0007 89 = 7.89 0.000 0001 = 1 10-7 (3) 6 31 1011 = 6.311001011 = 6.31 1021011 = 6.311013 (4) 0.1 203710-5=1.20370.110-5=1.20 3710-110-5 =1.20 3710-5 (5) –0.0004 508103=-4.5080.0001104=-4.50810-4104=-4.50810-8 (6) 0.7 00810-4 =7.0080.110-4=7.00810-110-3=7.00810-4 Example 12- Evaluate the following,express your answers in scientific notation and correct to 3 significant figures (a) (3.52108)(7.911012) =(3.527.91 )(108 1012) =27.84321020 =2.784321011020 =2.784321021 =2.781021 (b) 9 Corr. to 3 sig. Fig. 9 8 .16 10 8.16 10 6 6 = = 1 .4191310 =1 .42 10 3 3 5.75 10 5.75 10 Corr. to 3 sig. Fig. Classwork 1.12 ,express your answers in scientific notation and correct to 3 significant figures (1) (2.305107)(8.21012)=(2.3058.2)(107 105) =18.9011012=1.891011012 =1.891013 (2) (210-12)(71023) =(27)(10-121023) =141011 =1.41011011 = 1.41012 (3) (3.810-10)(810-11) =(3.88)(10-1010-11) =30.410-21 =3.0410110-21 = 3.0410-20 (4) 3 10 2 1 1 1 2 = = = 0 . 46875 10 4 . 69 10 10 4 . 69 10 3 6.4 10 (5) 8.009 10 3.5 10 (6) 6 4 5 = 2.2882 1010 = 2.29 1010 4.67 10 1 1 = = 3.3357 10 3.34 10 4 1.4 10 Example 13 – Express the values of the following as integers or decimal numbers (a) 2105=2 100 000 =200 000 (b) 3.1410-4=3.14 0.000 1 = 0.000314 (c)(2.510-3)(3.610-4)=2.53.610(-3)+(-4) =910-7 =90.0000001 =0.0000009 Classwork 1.13 (1) 6.36106=6.36 1000000 = 6.360000 (2) 4.1210-5=4.120.0000 1 = 0.0000412 (3) (1.310-5)(5.7107)= 1.35.710-5+7 =7.41102 =7.41100 =741 2 (4) 9.75 10 = 7 = 1.3 10000000 = 13000000 1 . 3 10 9 7.5 10 Example 14- express the following numbers in scientific notation and arrange them in ascending order 89, 98, 710, 107 Use calculator 89 98 710 107 =134217728 =1.34108 =43046721 =4.30107 =282475249 =2.82108 =10000000 =1107 10 Xy 7 = 8 Xy 9 = 9 Xy 8 = 7 Xy 10 = 107< 98 < 89 < 710 Compare powers of 10. The greater the power of 10, the greater the number. If powers of 10 are equal, compare values of d of the numbers Numeral Systems In the algebraic expression ax3+ bx2 + cx1 + dx0 x is an integer more than 1. a, b, c and d are all non-negative integers less than x. Denary System (十進制)- we use everyday When x = 10, abcd is a denary number. abcd = a 103 b 102 c 101 d 100 e.g. 3065(10)=3 103 0 102 6 101 5 100 3065(10)=3 1000 0 100 6 10 5 1 Place values Place holder Distinguish values 3065 ten basic numerals: 0, 1, 2, 3, 4, 5, between 6, 7, 8, 9 365 (lessand than 10) The place value of each digit is ten times the place value of the digit on its right-hand side Example 15 (a) Write down the place values of each digit of 50943 Digit 5 Place Value 10000 0 1000 9 100 4 10 3 1 (b) Express 50943 in the expanded form with base 10 50943(10)=510000 01000 9100 410 + 3 1 100 =5104 0103 9102 4101 + 3 Classwork 1.15 (1) Write down the place value of each digit in the following numbers (a) 24071 Digit Place Value 2 10000 4 1000 0 100 7 10 9 1000 1 100 4 10 5 1 1 1 (b) 9145 Digit Place Value (2) Express the following as denary numbers (a) 2541 = 2103 5102 4101 + 1 100 (b) 205041 = 2105 0104 5103 + 0 102 + 4 101 + 1 100 Challenge What are the expansions of 12.302? 12.302 = 1 101 2 100 3 101 0 102 2 103 Example 16 Express the following as denary numbers. (a) (b) 2 102 3 101 7 100 =200 30 7 =237 9 105 5 103 6 101 7 100 =9 105 0 104 5 103 0 102 6 101 7 100 =905067 Classwork 1.16 Express the following as denary numbers. (1) 6103 3101 =6103 0102 3101 0100 = 6030 (2) 410000 210 9 =4 104 0 103 0 102 2 101 9 100 =40029 (3) 5 10000 4 100 3 10 =5 104 0 103 4 102 3 101 0 100 =50430 Exercise 1E (1) Write down the place value of each digit 2 in the following denary numbers (a) 1232 100, 1 (b) 123423 10000, 10 (2) Express the following denary numbers in the expanded form with base 10 (a) 119= 1 102 1 101 9 100 (b) 2318= 2 103 3 102 1 101 8 100 (3) Express the following as denary numbers (a) 6 10 + 8 1 = 6 101 8 100 =68 (c) 8 100000 + 4 100 + 1 = 8105 0104 0103 4102 0101 1100 =800401 (e) 11000 + 4 100 + 9 1 = 1103 4102 0101 9100 =1409 (4) Find the greatest and smallest denary numbers (a) 2, 6, 4 Greatest 642, smallest 246 (b) 0,1,3,5 Greatest 5310, smallest 1035 (5) (a) 40014 10000, 1 10000/1=10000 (b) 241243 10000, 10 10000/10=1000 Denary System $100 213(10) = 2 100 1 10 $10 3 1 $1 0 to 9 (<10) 213(10) = 2 102 1 101 3 100 Binary System 23(10)= 1 0 1 4 1 2 1 1 0 to1 (<2) =10111(2) 10111(2)= 1 24 0 23 1 22 1 21 1 20 Denary System $100 213(10) = 2 100 1 10 $10 3 1 $1 0 to 9 (<10) 213(10) = 2 102 1 101 3 100 Binary System 23(10)= 1 $16 0 $8 1 $4 1 $2 1 $1 0 to1 (<2) =10111(2) 10111(2)= 1 24 0 23 1 22 1 21 1 20 Denary System (十進制) e.g. 3065(10)=3 103 0 102 6 101 5 100 0 to 9 (<10) Binary System (二進制)- only computer understand When x = 2, abcd is a binary number. abcd(2)= a 23 b 22 c 21 d 20 e.g. 1011(2)=1 23 0 22 1 21 1 20 1011(2)=1 8 0 4 1 2 1 1 Place values Place holder Distinguish 2 basic numerals: 0 to1 (< 2)values between 111 and 1011 The place value of each digit is two times the place value of the digit on its right-hand side. Example 17 (a) Write down the place value of each digit in 101 010(2) Digit 1 Place Value 32 0 16 1 8 0 4 (b) Find the place value of the digit 0 in 11 011(2) 1 2 0 1 =22=4 Classwork 1.17 (a) Write down the place value of each digit in 111 01(2) Digit 1 Place Value 16 1 8 1 4 0 2 (b) Find the place value of the digit 0 in 101 111(2) 0 1 =24=16 Example 18 Express the following binary numbers in the expanded form with base 2 (a) 1101(2)=1 23 1 22 0 21 1 20 (b) 1011011(2)=126 025 124 123 022 121 120 Classwork 1.18 Express the following binary numbers in the expanded form with base 2. (1) 10001 (2)=1 24 0 23 0 22 0 21 1 20 (2) 100110 (2) =125 024 023 122 121 020 Example 19 Express the following as binary numbers. (a) 1 8 1 4 0 2 0 1 23 1 22 0 21 0 20 =1100(2) =1 1 25 1 23 1 1 =1 25 0 24 1 23 0 22 0 21 1 20 (2) =101001(2) (b) Classwork 1.19 (1) 1 16 1 4 =1 16 0 8 1 4 0 2 0 1 =1 24 0 23 1 22 0 21 0 20 =10100(2) (2)1 24 1 22 1 =1 16 0 8 1 4 0 2 1 1 =10101(2) Conversion of Binary number into Denary number Example 20 (b) Convert 101010(2) into a denary number 101010(2)=1 25 0 24 1 23 0 22 1 21 0 20 =25 23 21 =42 Classwork 1.20 (1) (b) Convert 101 111(2) into a denary number 101111(2) =1 25 0 24 1 23 1 22 1 21 1 20 =25 23 22 21 20 =32+8+4+2+1 =47 (2) (b) Convert 11 110 010(2) into a denary number 11110010(2)=127 126 125 124 023 022 121 020 =128 64 32 16 2 =242 Example 21 Convert 10011(2) into a denary number 10011 (2) = 1 24 0 23 0 22 1 21 1 20 =1 16 0 8 0 4 1 2 1 1 =16 2 1 =19 Classwork 1.21 (1) (b) Convert 111 000(2) into a denary number 111000(2) =1 25 1 24 1 23 0 22 0 21 0 20 =25 24 23 =32+8+4 =56 (2) (b) Convert 1010110(2) into a denary number 1010110(2) = 126 025 124 023 122 121 020 =64 16 4 2 =86 Conversion of Denary number into Binary number Method 1- Fill in the number from left to right 24 2 3 22 21 20 16 8 4 2 1 30(10) = 1 1 1 1 0 = 11110(2) Conversion of Denary number into Binary number Method 2- divide the denary number by 2 successively write the answer in terms of remainders from bottom to top 2) 30 2)15 2) 7 2) 3 2)1 0 30(10) = 11110(2) 0 1 1 1 1 Example 22- Convert the following denary into binary number 2) 32 (a) 21 2) 21 (b) 32 2) 16 1 =10101(2) 2) 10 =100000(2) 2) 8 2) 5 0 2) 4 1 2) 2 2) 2 0 2) 1 2) 1 1 0 0 0 0 0 0 0 1 Classwork 1.22- Convert the following denary into binary number 2) 28 (1) 11 2) 11 (2) 28 0 2) 14 1 5 2) =1011(2) =11100(2) 2) 7 0 2) 2 1 1 2) 3 0 2) 1 1 1 2) 1 0 1 0 (3) 64 =1000000(2) 2) 64 2) 32 2) 16 2) 8 2) 4 2) 2 2) 1 0 0 0 0 0 0 0 1 0,1 (<2) Binary System 23(10)= 1 $16 0 $8 1 $4 1 $2 1 $1 12F(10) =10111(2) 10111(2)= 1 24 0 23 1 22 1 21 1 20 Hexadecimal System (十六進制) =303(10) = 1 $256 2 $16 + F =12F(16) $1 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (<16) 12F(16)=1 162 2 161 + F 160 Example 23 (a) Write down the place value of each digit in 39A1(16) Digit 3 Place Value 4096 163 9 256 162 A 16 161 1 1 160 (b) Find the place value of the digit in 4A067(16)=162=256 Classwork 1.23 (a) Write down the place value of each digit in 9FFC(16) Digit 9 Place Value 4096 F 256 F 16 C 1 (a) Write down the place value of digit A in FC6A7(16) =16 Example 24 Express the following hexadecimal numbers in the expanded form with base 16 (a) 82A(16)=8 162 2 161 + A 160 (b) ABCD(16)=10 163 11 162 + 12 161 + 13 160 Classwork 1.24 Express the following hexadecimal numbers in the expanded form with base 16 (1) F3CF(16)=15 163 3 162 + 12 161 + 15 160 (2) 100FFF(16)=1165 0164 + 0163 + 15162 + 15161 + 15160 Example 25 Convert the following hexadecimal numbers into denary numbers (a) 123(16)=1 162 2 161 + 3 160= 256 + 16 + 3 = 291(10) (b) ABC (16)=10 162 11 161 + 12 160 =10 256 11 16 + 12 =2748 Classwork 1.25 (a) 2F3(16)=2 162 15161 + 3160= 512 +240 + 3 = 755(10) (b) 3DD (16)=3162 13161 + 13160 =768 208 +13 =989(10) (c) AFFF(16)=10163 15162 +15161 +15160 =40960 3840 +240+15 =989(10) Example 26 – Convert the following denary numbers into hexadecimal numbers (a) 45(10) =2D(16) (b) 345(10) =159(16) )45 16) 2 0 )345 16) 21 16) 1 16 16 13 (D) 2 0 9 5 1 Classwork 1.26 – Convert the following denary numbers into hexadecimal numbers (1) 321(10)=141(16) (2) 405(10) =195(16) )321 16) 20 16) 1 )405 16) 25 16) 1 16 0 16 1 4 1 (3) 4110(10) =100E(16) 0 )4110 16) 256 16) 16 16) 1 5 9 1 16 0 14(E) 0 0 1