Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
copyright©amberpasillas2010 Exponents give us many shortcuts for multiplying and dividing quickly. Each of the key rules for exponents has an importance in algebra. copyright©amberpasillas2010 5 2 =2•2•2•2•2=? We know 2•2=4 4•2=8 8 • 2 = 16 16 • 2 = 32 So 2 • 2 • 2 • 2 • 2 = 32 copyright©amberpasillas2010 An exponent tells how many times a number is multiplied by itself. 3 Base 4 Exponent 4•4•4 = 64 copyright©amberpasillas2010 How do we write in exponential form? 3 3 3 4 4 4 4 Answer: 3 4 3 4 copyright©amberpasillas2010 How do we write in exponential form? 2 2 2 3 3 4 Answer: 2 3 4 3 2 Notice: 4 4 1 copyright©amberpasillas2010 1 Write each in Exponential Form. x x x x y y x y 4 2 2 2 2 3 3 3 3 3x3x x y copyright©amberpasillas2010 2 3 2 4 3 x y 2 3 Write each in Factored Form. 8a b 8 a a a b b xy xy xy xy xy 3 2 4 copyright©amberpasillas2010 If x3 means x • x • x and x4 means x • x • x • x 3 4 then what is x • x ? x•x•x•x•x•x•x 7 =x Can you think of a quick way to come up with the solution? copyright©amberpasillas2010 Just Add the Exponents! 3 x x 4 x 3 4 x 7 Your shortcut is called the Product of Powers Property. copyright©amberpasillas2010 When multiplying powers with the same base, just ADD the exponents. For all positive integers m and n: m n m n a a a Ex: 4 3 2 4 =4 3+2 4 4 4 4 4=4 copyright©amberpasillas2010 5 = 4 5 Try This One! What is 31 • 34 • 35? Since we are multiplying like bases just add the exponents. (1 + 4 + 5) Answer: 3 copyright©amberpasillas2010 = 310 Simplify. 2 3 1) 2 2 2 5 2 32 2 3 7 4 2) d d d 11 d 7 copyright©amberpasillas2010 4 Simplify. 21 3) 3 3 3 3 3 27 2 1 1 1 1 1 1 2 2 2 2 2 2 3 1 1 1 4) 2 2 2 1 32 copyright©amberpasillas2010 5 Simplify. 5) 2 2 2 6 2 3 33 3 64 copyright©amberpasillas2010 6) a b a 57 2 a b 12 2 a b 5 2 7 5 2 2 5 2 = 7 (b ) 10 = 49b 3 2 2 3 2 (7b ) 5 5 (7b )(7b ) (5x ) 3 3 (5x )(5x ) = 5 (x ) 6 = 25x Can you think of a quick way to come up with the solution? copyright©amberpasillas2010 Just Multiply the Exponents! (x ) x 3 4 3 4 x 12 Your short cut is called the Power of a Power Property. copyright©amberpasillas2010 Just Multiply the Exponents! 2 3 (a ) = 2 a • 2 a • 2 a = 2+2+2 a = Your short cut is called the Power of Power Property. copyright©amberpasillas2010 6 a To find the power of a power, you MULTIPLY the exponents. This is used when an exponent is on the outside of parenthesis. 1 2 (5 a b) 3 3 2•3 3 5 a b 6 3 125a b copyright©amberpasillas2010 To find the power of a power, you MULTIPLY the exponents. This is used when an exponent is on the outside of parenthesis. 1 3 5 (2 x ) 5 3•5 2 x 32x 15 copyright©amberpasillas2010 1 5 2 6(3 y z) 2 5•2 2 6(3 y 6(9y z ) 5•2 2 z ) 10 2 54y z copyright©amberpasillas2010 Simplify Using What You Just Learned 2 5 4 5 2) 3m 1m 1) (y ) y 20 3m copyright©amberpasillas2010 7 Simplify Using What You Just Learned 3) a a 4 a 3 4) (4x 2 y)2 7 4 2 16 x y copyright©amberpasillas2010 Simplify Using What You Just Learned 5) m m 5 6 6) x 4 y 2 5 20 10 11 m x y 1 1 20 10 x y copyright©amberpasillas2010 Simplify Using What You Just Learned 2 4 3 7) (2a b ) 8) 2x 4x 3 6 12 8a b 8x copyright©amberpasillas2010 8 5 Take Out Your Study Guide!!! copyright©amberpasillas2010 #10 Just flip the fraction over to make the exponent positive! 1 8 2 4 7 2 3 2 2 8 8 2 1 1 2 64 2 7 7 2 4 4 49 16 1 64 4 4 (1)3 4 1 1 3 3 copyright©amberpasillas2010 64 #11 When multiplying powers with the same base, just ADD the exponents. For all positive integers m and n: m a •a Ex : 2 n m+n = a 3 (3 )(3 ) = (3 • 3) • (3 • 3 •3) =3 5 2+3 4 =3 5 (x )(x ) = x 5+4 copyright©amberpasillas2010 =x 9 # 12 To find the power of a power, you MULTIPLY the exponents . This is used when an exponent is on the outside of parenthesis. 1 2 (5 a b) = 5 a 1 3 5 (2 x ) 1 8 8(3 y z) 6 3 3 2•3 3 3 b = 125a b 5 3•5 =2 x 2 15 = 32x 2 8•2 2 = = 8 (3 y z ) copyright©amberpasillas2010 16 2 72y z Extra slides copyright©amberpasillas2010 #11 2x 5x 3 7 34 2 5 x 10x Simplify. 1) (8a ) (3a ) 5 7 24 a 2 1 5 3 3) (9x y )(-2xy ) 18 x y 3 8 12 2) (-3a) (4a ) 7 1 12 a 4 2 1 3 1 5 4) (6a bc )(5ab ) 3 8 6 30 a b c copyright©amberpasillas2010 3