Download Factoring Perfect Square Trinomials a

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
6.4
1.
2.
3.
4.
Factoring Special Products
Factor perfect square trinomials.
Factor a difference of squares.
Factor a difference of cubes.
Factor a sum of cubes.
Write as many perfect squares as you can.
1
4
9
16
25
36
49
64
81
100
121
144
169
196
225
625
Write as many perfect cubes as you can.
1
8
27
64
125
Perfect Square Trinomials:
Perfect squares
x  3x  3 
x  6x  9
2
x  3
2
6x is double the product.
Perfect squares
2 x  3 y 2 x  3 y   4 x
2
 12 xy  9 y
2
2 x  3 y 
2
-12xy is double the product.
Perfect Square Trinomials:
Caution: Don’t just check the first and last terms!
x  3x  12 
x  15x  36
2
 x  6
2
15x is not double the
product.
Factor completely :
Perfect squares
4a  20ab  25b
2
2
2a  5b 
2
-20ab is double the
product.
Check by foiling!
2a  5b2a  5b  4a
2
 20ab  25b
2
Factor completely :
Perfect squares
2
64a  208a  169
8a  132
-208a is double the
product.
Check by foiling!
Factor completely :
9m  24m  16
2
3m  4
2
24m is double the
product.
Check by foiling!
3m  4
2
 9m  24m  16
2
Factor completely :
y  6 y  36
2
 y  6
2
6 is NOT double the product.
Not a perfect square trinomial.
It may still be factorable.
Prime
Factor completely :
54 x  72 x  24
2

6 9 x  12 x  4
2
63x  2
2

Factoring Perfect Square Trinomials
a2 + 2ab + b2 = (a + b)2
a2 – 2ab + b2 = (a – b)2
Difference of Squares:
x  3x  3 
Conjugates
x 9
2
 x  3 x  3
2 x  3 y 2 x  3 y   4 x
Conjugates
2
 9y
2
2 x  3 y 2 x  3 y 
Factor completely :
a  121
2
Think Conjugates!
a  11a  11
Check by foiling!
Factor:
25x  16
2
Think Conjugates
5 x  45 x  4
Check by foiling!
Factor completely :
16 x  49
2
The sum of squares CANNOT be factored!
Prime
Factor completely :
64m  36 y
2
2
8m  6 y 8m  6 y 

4 16m  9 y
2
2

44m  3 y 4m  3 y 
Check by foiling!
Factor completely:
x  16
4
x
2

4 x 4
2
x  2x  2x
2

4
Check by foiling!

Factoring a Difference of Squares
a2 – b2 = (a + b)(a – b)
Warning: A sum of squares a2 + b2 is
prime and cannot be factored.
Copyright © 2011 Pearson Education, Inc.
Sum and Difference of Cubes
Same.
Multiply:
x y 
3
3
Cube Root
x y 
3
3
3 terms – trinomial rather
Opposite.than binomial
x  y x
x  y x
Always positive
2
Square
2
 xy  y

2
 xy  y
2
Product Square


Factor completely:
8a  27b
3
3
Cubes = trinomial
 2a  3b 4a
2
Square
 6ab  9b

Product
2
Square

Factor completely:
y  64
3
Cubes = trinomial

y 4
 y
2
Square
 4 y  16 

Product
Square
Factor completely:
1000a  27b
3
3
Cubes = trinomial
10a  3b100a  30ab  9b 
2
Square
2

Product
Square
Factoring a Sum or Difference of Cubes
a3 + b3 = (a + b)(a2 – ab + b2)
a3 – b3 = (a – b)(a2 + ab + b2)
Copyright © 2011 Pearson Education, Inc.
Factor completely. 9x2 – 49
a) (3x + 5)2
b) (3x + 7)(3x – 7)
c) (3x – 7)2
d) (7x + 3)(7x – 3)
6.4
Copyright © 2011 Pearson Education, Inc.
Slide 6- 23
Factor completely. 9x2 – 49
a) (3x + 5)2
b) (3x + 7)(3x – 7)
c) (3x – 7)2
d) (7x + 3)(7x – 3)
6.4
Copyright © 2011 Pearson Education, Inc.
Slide 6- 24
Factor completely. 4a2 – 20a + 25
a) (2a + 5)2
b) (2a – 5)2
c) (4a + 5)2
d) (4a – 5)2
6.4
Copyright © 2011 Pearson Education, Inc.
Slide 6- 25
Factor completely. 4a2 – 20a + 25
a) (2a + 5)2
b) (2a – 5)2
c) (4a + 5)2
d) (4a – 5)2
6.4
Copyright © 2011 Pearson Education, Inc.
Slide 6- 26
Factor completely. 2n2 + 24n + 72
a) 2(n + 6)2
b) 2(n + 6)(n – 6)
c) 2(n – 6)2
d) (2n + 6)(2n – 6)
6.4
Copyright © 2011 Pearson Education, Inc.
Slide 6- 27
Factor completely. 2n2 + 24n + 72
a) 2(n + 6)2
b) 2(n + 6)(n – 6)
c) 2(n – 6)2
d) (2n + 6)(2n – 6)
6.4
Copyright © 2011 Pearson Education, Inc.
Slide 6- 28
Related documents