Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C3: Starters Revise formulae and develop problem solving skills. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DMO’L.St Thomas More Starter 1 Solve the equation 3 cos 2  sin  1  0 DMO’L.St Thomas More for 0    2 Starter 1 Solve the equation 3 cos 2  sin  1  0 for 3(1  2 sin  )  sin   1  0 2 DMO’L.St Thomas More 0    2 Starter 1 Solve the equation for 0    2 3 cos 2  sin  1  0 2 3(1  2 sin  )  sin   1  0 6 sin   sin   2  0 (3 sin   2)( 2 sin   1)  0 2 1 sin    or sin   3 2 2   3.87,5.55, 6 ,  DMO’L.St Thomas More 5 6 Back Starter 2 Prove the identity sec   tan   sec   tan  4 4 2 DMO’L.St Thomas More 2 Starter 2 Prove the identity LHS  sec   tan  4 4 DMO’L.St Thomas More Starter 2 Prove the identity LHS  sec 4   tan 4  2 2 2 2  (sec   tan  )(sec   tan  ) 2 2 2 2  (sec   tan  )(1  tan   tan  )  (sec   tan  )  RHS 2 2 DMO’L.St Thomas More Back Starter 3 Prove the identity sin 3  sin   tan  cos 3  cos  DMO’L.St Thomas More Starter 3 sin 3  sin  LHS  cos 3  cos  2 cos( 32 ) sin( 32 )  cos 3  cos  2 cos( 32 ) sin( 32 )  2 cos( 32 ) cos( 32 ) 2 cos( 2 ) sin(  )  2 cos( 2 ) cos( ) DMO’L.St Thomas More Starter 3 sin 3  sin  LHS  cos 3  cos  2 cos( 32 ) sin( 32 )  cos 3  cos  2 cos( 32 ) sin( 32 )  2 cos( 32 ) cos( 32 ) Back 2 cos( 2 ) sin(  )   tan   RHS 2 cos( 2 ) cos( ) DMO’L.St Thomas More Starter 4 Given that tan A  34 and sin B  135 where A is acute and B is obtuse, find cos ec( A  B ) DMO’L.St Thomas More Starter 4 tan A  3 4 sin B  135 By Pythagoras sin A  3 5 tan B  125 125 cos A  4 5 12 cos B  12 13 13 A is acute B is obtuse DMO’L.St Thomas More Starter 4 1 cos ec( A  B)  sin( A  B) 1  sin A cos B  cos A sin B 1  3 5 12 4     5 13 5 13 1  36 20  65  65 DMO’L.St Thomas More Starter 4 1 cos ec( A  B)  sin( A  B) Back 1  sin A cos B  cos A sin B 1  3 5 12 4     5 13 5 13 1 65  36 20    65  65 16 DMO’L.St Thomas More Starter 5 Differentiate y  e sin x 2x ye sin x cos x y ln x sin 2 x DMO’L.St Thomas More Starter 5 Differentiate y  e sin x 2x ue du dx 2x  2e v  sin x 2 x dv dx dy 2x 2x  2e sin x  e cos x dx DMO’L.St Thomas More  cos x Starter 5 Differentiate ye sin 2 x du dx u  sin 2x ye  2 cos 2 x dy du e dy u sin 2 x  e .2 cos 2 x  2e cos 2 x dx DMO’L.St Thomas More u u Starter 5 Differentiate sin x cos x y ln x u  sin x cos x 2 2 du dx  cos x  sin x du dx  cos 2 x dy ln x cos 2 x  1x sin x cos x  2 dx (ln x) DMO’L.St Thomas More v  ln x dv 1  dx x Starter 5 Differentiate sin x cos x y ln x u  sin x cos x 2 2 du dx  cos x  sin x du dx  cos 2 x dy ln x cos 2 x  21x sin 2 x  2 dx (ln x) DMO’L.St Thomas More v  ln x dv 1  dx x Starter 5 Differentiate sin x cos x y ln x u  sin x cos x 2 2 du dx  cos x  sin x du dx  cos 2 x dy 2 x ln x cos 2 x  sin 2 x  2 dx 2 x(ln x) DMO’L.St Thomas More v  ln x dv 1  dx x Back Starter 6 Differentiate y  ln(sec x) y  (1  sin 3x) cos 2 x y  sin x e 7 DMO’L.St Thomas More Starter 6 Differentiate y  ln(sec) x u  sec x  (cos x) du dx du dx 2  (cos x) sin x  sin x cos2 x dy 1 sin x  . 2 dx u cos x DMO’L.St Thomas More 1 y  ln u dy du  1 u Starter 6 Differentiate y  ln(sec x) u  sec x  (cos x) du dx du dx 2  (cos x) sin x  1 y  ln u dy du  sin x cos2 x dy 1 sin x sin x cos x  .   tan x 2 2 dx u cos x cos x DMO’L.St Thomas More 1 u Starter 6 Differentiate y  (1  sin 3x) 7 u  1 sin 3x du dx  3 cos 3x y u dy du 7  7u 6 dy 6 6  7u .3 cos 3x  21(1  sin 3x) cos 3x dx DMO’L.St Thomas More Starter 6 Differentiate cos 2 x y  sin x e dy e  dx sin x u  cos 2x du dx  2 sin 2 x ve sin x dv dx  cos x.e sin x (2 sin 2 x)  cos 2 x(cos x.e 2 sin x e DMO’L.St Thomas More sin x ) Starter 6 Differentiate cos 2 x y  sin x e u  cos 2x du dx  2 sin 2 x ve sin x dv dx  cos x.e sin x Back dy sin x  e (2 sin 2 x  cos 2 x cos x) dx DMO’L.St Thomas More Starter 7 Solve the following equations, giving exact solutions e 2x 7 ln( 2 x  1) 2  5 DMO’L.St Thomas More Starter 7 Solve the following equations, giving exact solutions e 7 2x  ln 7 x  12 ln 7 2x Back ln( 2 x  1)  5 2 ln( 2 x  1)  5 5 ln( 2 x  1)  2 5 2x 1  e 2 5 e 2 1 x 2 2 DMO’L.St Thomas More Starter 8 Show that x 2  5 x  3  0 can in be written in the form x  5 x  3 Use the iteration xn1  5xn  3 starting with x0  5 to generate x1 , x2 , x3 , x4 , x5 , x6 Show that 5.5 is a root of the equation to one decimal place. x  5x  3 2 x  5x  3 DMO’L.St Thomas More Starter 8 x0  5 Use the iteration xn1  5xn  3 5.2915 x1  x0  5 to generate x1 , x2 , x3 , x4 , x5 , x6 starting with Show that is a root of the equation to 5.4275 x2  5.5 one decimal place. Calculator: x3  5.489 x0  5 x4  5.518 x1  5.2915 x5  5.530 x6  5.537 5= 5Ans+3==== DMO’L.St Thomas More Starter 8 Show that 5.5 is a root of the equation to one decimal place. f ( x)  x  5 x  3 2 f (5.55)  0.525 f (5.45)  0.547 Change of sign  Root between 5.55 and 5.45 Hence, x = 5.5 is a root to 1 decimal place. DMO’L.St Thomas More Back Starter 9 Sketch the graph y  2 x  5 Hence, or otherwise, solve 2 x  5  5 y=5 when x = 3 x = 0 or 5 y  2x  5 y=2x-5 DMO’L.St Thomas More Back Starter 10 By differentiating find the coordinates of the turning point on the curve y  x 3  81ln x State the nature of the turning point (i.e. maximum or minimum). dy 81 2  3x   0 For turning points dx xBack when xd =2 y3 2 d y81 81  6 x 2 2 6 x  2  0 2 dx dx x x 3x 3  81 Hence, minmum point at (3,-61.99) DMO’L.St Thomas More x3 Starter 11 Solve the following equations, giving exact solutions e 2x x 2 x4 e e ln( 5 x  3)  12 2 DMO’L.St Thomas More Starter 11 Solve the following equations, giving exact solutions e 2x e 2x x 2 x4 e e e 3x4 Take logs base e 2x  3x  4 x  4 DMO’L.St Thomas More Starter 11 Solve the following equations, giving exact solutions ln( 5 x  3)  12 2 ln( 5 x  3)  12 ln( 5 x  3)  6 2 e to the power of 5x  3  e 6 e 3 x 5 6 DMO’L.St Thomas More Back Starter 12 kx Complete the table: Back dy dx y n nkx n 1 sin x cos x cos x  sin x tan x sec 2 x sec x sec x tan x ln x 1 x ex DMO’L.St Thomas More a x e x x a ln a Starter 13 Complete the table: (3 x  1) 2 sin 2 x 3 cos x Back dy dx y n 6nx(3 x  1) 2 n 1 2 cos 2 x  3 cos x sin x 2 2 tan 4 x 4 sec 4 x sec 7 x 7 sec 7 x tan 7 x ln 6 x 1 x e 6x 35 x DMO’L.St Thomas More 6e 6x 5(35 x ) ln 3