Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C3: Starters Revise formulae and develop problem solving skills. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DMO’L.St Thomas More Starter 1 Solve the equation 3 cos 2 sin 1 0 DMO’L.St Thomas More for 0 2 Starter 1 Solve the equation 3 cos 2 sin 1 0 for 3(1 2 sin ) sin 1 0 2 DMO’L.St Thomas More 0 2 Starter 1 Solve the equation for 0 2 3 cos 2 sin 1 0 2 3(1 2 sin ) sin 1 0 6 sin sin 2 0 (3 sin 2)( 2 sin 1) 0 2 1 sin or sin 3 2 2 3.87,5.55, 6 , DMO’L.St Thomas More 5 6 Back Starter 2 Prove the identity sec tan sec tan 4 4 2 DMO’L.St Thomas More 2 Starter 2 Prove the identity LHS sec tan 4 4 DMO’L.St Thomas More Starter 2 Prove the identity LHS sec 4 tan 4 2 2 2 2 (sec tan )(sec tan ) 2 2 2 2 (sec tan )(1 tan tan ) (sec tan ) RHS 2 2 DMO’L.St Thomas More Back Starter 3 Prove the identity sin 3 sin tan cos 3 cos DMO’L.St Thomas More Starter 3 sin 3 sin LHS cos 3 cos 2 cos( 32 ) sin( 32 ) cos 3 cos 2 cos( 32 ) sin( 32 ) 2 cos( 32 ) cos( 32 ) 2 cos( 2 ) sin( ) 2 cos( 2 ) cos( ) DMO’L.St Thomas More Starter 3 sin 3 sin LHS cos 3 cos 2 cos( 32 ) sin( 32 ) cos 3 cos 2 cos( 32 ) sin( 32 ) 2 cos( 32 ) cos( 32 ) Back 2 cos( 2 ) sin( ) tan RHS 2 cos( 2 ) cos( ) DMO’L.St Thomas More Starter 4 Given that tan A 34 and sin B 135 where A is acute and B is obtuse, find cos ec( A B ) DMO’L.St Thomas More Starter 4 tan A 3 4 sin B 135 By Pythagoras sin A 3 5 tan B 125 125 cos A 4 5 12 cos B 12 13 13 A is acute B is obtuse DMO’L.St Thomas More Starter 4 1 cos ec( A B) sin( A B) 1 sin A cos B cos A sin B 1 3 5 12 4 5 13 5 13 1 36 20 65 65 DMO’L.St Thomas More Starter 4 1 cos ec( A B) sin( A B) Back 1 sin A cos B cos A sin B 1 3 5 12 4 5 13 5 13 1 65 36 20 65 65 16 DMO’L.St Thomas More Starter 5 Differentiate y e sin x 2x ye sin x cos x y ln x sin 2 x DMO’L.St Thomas More Starter 5 Differentiate y e sin x 2x ue du dx 2x 2e v sin x 2 x dv dx dy 2x 2x 2e sin x e cos x dx DMO’L.St Thomas More cos x Starter 5 Differentiate ye sin 2 x du dx u sin 2x ye 2 cos 2 x dy du e dy u sin 2 x e .2 cos 2 x 2e cos 2 x dx DMO’L.St Thomas More u u Starter 5 Differentiate sin x cos x y ln x u sin x cos x 2 2 du dx cos x sin x du dx cos 2 x dy ln x cos 2 x 1x sin x cos x 2 dx (ln x) DMO’L.St Thomas More v ln x dv 1 dx x Starter 5 Differentiate sin x cos x y ln x u sin x cos x 2 2 du dx cos x sin x du dx cos 2 x dy ln x cos 2 x 21x sin 2 x 2 dx (ln x) DMO’L.St Thomas More v ln x dv 1 dx x Starter 5 Differentiate sin x cos x y ln x u sin x cos x 2 2 du dx cos x sin x du dx cos 2 x dy 2 x ln x cos 2 x sin 2 x 2 dx 2 x(ln x) DMO’L.St Thomas More v ln x dv 1 dx x Back Starter 6 Differentiate y ln(sec x) y (1 sin 3x) cos 2 x y sin x e 7 DMO’L.St Thomas More Starter 6 Differentiate y ln(sec) x u sec x (cos x) du dx du dx 2 (cos x) sin x sin x cos2 x dy 1 sin x . 2 dx u cos x DMO’L.St Thomas More 1 y ln u dy du 1 u Starter 6 Differentiate y ln(sec x) u sec x (cos x) du dx du dx 2 (cos x) sin x 1 y ln u dy du sin x cos2 x dy 1 sin x sin x cos x . tan x 2 2 dx u cos x cos x DMO’L.St Thomas More 1 u Starter 6 Differentiate y (1 sin 3x) 7 u 1 sin 3x du dx 3 cos 3x y u dy du 7 7u 6 dy 6 6 7u .3 cos 3x 21(1 sin 3x) cos 3x dx DMO’L.St Thomas More Starter 6 Differentiate cos 2 x y sin x e dy e dx sin x u cos 2x du dx 2 sin 2 x ve sin x dv dx cos x.e sin x (2 sin 2 x) cos 2 x(cos x.e 2 sin x e DMO’L.St Thomas More sin x ) Starter 6 Differentiate cos 2 x y sin x e u cos 2x du dx 2 sin 2 x ve sin x dv dx cos x.e sin x Back dy sin x e (2 sin 2 x cos 2 x cos x) dx DMO’L.St Thomas More Starter 7 Solve the following equations, giving exact solutions e 2x 7 ln( 2 x 1) 2 5 DMO’L.St Thomas More Starter 7 Solve the following equations, giving exact solutions e 7 2x ln 7 x 12 ln 7 2x Back ln( 2 x 1) 5 2 ln( 2 x 1) 5 5 ln( 2 x 1) 2 5 2x 1 e 2 5 e 2 1 x 2 2 DMO’L.St Thomas More Starter 8 Show that x 2 5 x 3 0 can in be written in the form x 5 x 3 Use the iteration xn1 5xn 3 starting with x0 5 to generate x1 , x2 , x3 , x4 , x5 , x6 Show that 5.5 is a root of the equation to one decimal place. x 5x 3 2 x 5x 3 DMO’L.St Thomas More Starter 8 x0 5 Use the iteration xn1 5xn 3 5.2915 x1 x0 5 to generate x1 , x2 , x3 , x4 , x5 , x6 starting with Show that is a root of the equation to 5.4275 x2 5.5 one decimal place. Calculator: x3 5.489 x0 5 x4 5.518 x1 5.2915 x5 5.530 x6 5.537 5= 5Ans+3==== DMO’L.St Thomas More Starter 8 Show that 5.5 is a root of the equation to one decimal place. f ( x) x 5 x 3 2 f (5.55) 0.525 f (5.45) 0.547 Change of sign Root between 5.55 and 5.45 Hence, x = 5.5 is a root to 1 decimal place. DMO’L.St Thomas More Back Starter 9 Sketch the graph y 2 x 5 Hence, or otherwise, solve 2 x 5 5 y=5 when x = 3 x = 0 or 5 y 2x 5 y=2x-5 DMO’L.St Thomas More Back Starter 10 By differentiating find the coordinates of the turning point on the curve y x 3 81ln x State the nature of the turning point (i.e. maximum or minimum). dy 81 2 3x 0 For turning points dx xBack when xd =2 y3 2 d y81 81 6 x 2 2 6 x 2 0 2 dx dx x x 3x 3 81 Hence, minmum point at (3,-61.99) DMO’L.St Thomas More x3 Starter 11 Solve the following equations, giving exact solutions e 2x x 2 x4 e e ln( 5 x 3) 12 2 DMO’L.St Thomas More Starter 11 Solve the following equations, giving exact solutions e 2x e 2x x 2 x4 e e e 3x4 Take logs base e 2x 3x 4 x 4 DMO’L.St Thomas More Starter 11 Solve the following equations, giving exact solutions ln( 5 x 3) 12 2 ln( 5 x 3) 12 ln( 5 x 3) 6 2 e to the power of 5x 3 e 6 e 3 x 5 6 DMO’L.St Thomas More Back Starter 12 kx Complete the table: Back dy dx y n nkx n 1 sin x cos x cos x sin x tan x sec 2 x sec x sec x tan x ln x 1 x ex DMO’L.St Thomas More a x e x x a ln a Starter 13 Complete the table: (3 x 1) 2 sin 2 x 3 cos x Back dy dx y n 6nx(3 x 1) 2 n 1 2 cos 2 x 3 cos x sin x 2 2 tan 4 x 4 sec 4 x sec 7 x 7 sec 7 x tan 7 x ln 6 x 1 x e 6x 35 x DMO’L.St Thomas More 6e 6x 5(35 x ) ln 3