Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Voltage-Controlled Oscillator (VCO) fosc Desirable characteristics: • Monotonic fosc vs. VC characteristic with adequate frequency range • Well-defined Kvco KPD VD F(s) + VC slope = Kvco fmin fVC fin fmax VC ^ Kvco s fout Noise coupling from VC into PLL output is directly proportional to Kvco. ¸N EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 1 Oscillator Design Vin Þ 0 A(s) Vout Vout A(s) º HCL (s) = Vin 1+ f × A(s) loop gain f Barkhausen’s Criterion: If a negative-feedback loop satisfies: then the circuit will oscillate at frequency osc. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 2 Inverters with Feedback (1) 1 inverter: V1 V2 1 inverter V2 feedback 1 stable equilibrium point V1 V2 2 inverters: V1 feedback V2 3 equilibrium points: 2 stable, 1 unstable (latch) 2 inverters V1 EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 3 Inverters with Feedback (2) 3 inverters forming an oscillator: V1 V2 V2 1 unstable equilibrium point due to phase shift from 3 capacitors V1 Let each inverter have transfer function Hinv ( jw) = Loop gain: Hloop ( jw) = éëHinv ( jw)ùû = 3 A03 (1+ jw p) A0 1+ jw p 3 Applying Barkhausen’s criterion: Hloop ( jwosc ) = EECS 270C / Winter 2016 A03 é1+ 3ù ë û Prof. M. Green / U.C. Irvine 3 > 1 Þ A0 > 2 2 4 Ring Oscillator Operation tp VA tp tp VB VC VA tp VB 1 Tosc = 3t p 2 Þ Tosc = 6t p tp VC tp VA 1 Tosc 2 EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 5 Variable Delay Inverters (1) Inverter with variable load capacitance: Vin Current-starved inverter: Vout VC Vin Vout VC EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 6 Variable Delay Inverters (2) Interpolating inverter: ISS + VC _ R Vout+ R Vout- Vin+ Vin- Vin+ VinRG Ifast RG Islow • tp is varied by selecting weighted sum of fast and slow inverter. • Differential inverter operation and differential control voltage • Voltage swing maintained at ISSR independent of VC. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 7 Differential Ring Oscillator + − + − VA + − VB VA VB VC VC + − VD − + VA additional inversion (zero-delay) tp tp 1 Tosc = 4t p 2 Þ Tosc = 8t p tp tp VD Use of 4 inverters makes quadrature signals available. VA EECS 270C / Winter 2016 1 Tosc 2 Prof. M. Green / U.C. Irvine 8 Resonance in Oscillation Loop Hr ( jw) Hr (s) 1 Hr (s) + p ÐHr ( jw) r 2 r - At dc: Since Hr(0) < 1, latch-up does not occur, even with positive feedback. EECS 270C / Winter 2016 p 2 At resonance: Hr ( jwr ) > 1 Þ w = w osc r ÐHr ( jwr ) = 0 Prof. M. Green / U.C. Irvine 9 LC VCO (1) L Vin Hr (s) C Vout wr = Vout Vin 1 LC Hr (s) Þ Þ 2L C C Hr (s) realizes negative resistance EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 10 LC VCO (2) Consider simplified parallel LCR connected to a negative resistance element: LC tank with loss Negative conductance element: Exhibits slope -gp at origin of the i-v characteristic Necessary condition for oscillation: EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 11 LC VCO (3) I I V where a1 , a3 > 0 V Negative conductance in parallel with Rp = 200: I’ I’ V V EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 12 LC VCO (4) VC Case 1: gp < 1/Rp (stable) IL Transient waveforms: IL Iloss + t VC _ IL Initial condition Phase plot: VC EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 13 LC VCO (5) IL VC Case 2: gp = 10m > 1/Rp (unstable) IL VC Transient waveforms: Iloss Iloss + VC _ t Iloss IL Limit cycle Phase plot: Initial condition Vc VC EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 14 LC VCO (6) IL VC Case 2: gp = 10m > 1/Rp (unstable) with different initial condition IL Iloss Transient waveforms: VC + Iloss VC _ t IL Initial condition Phase plot: Limit cycle VC EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 15 LC VCO (7) LC VCO schematic: Cross-coupled characteristic: I1 I2 DC biasing: Vdm EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 16 LC VCO (8) Voutn Voutp I1 I2 Voutp , Voutn I1 , I2 t “Voltage-Controlled” topology EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 17 LC VCO (9) LC VCO with current source: Cross-coupled characteristic: I1 I2 DC biasing: 2Rcm 1 2 ISS EECS 270C / Winter 2016 Vdm Prof. M. Green / U.C. Irvine 18 LC VCO (9) Voutn Voutp I1 I2 Voutp , Voutn I1 , I2 = 2.6 mA t “Current-Controlled” topology EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 19 Variable Capacitance varactor = variable reactance Cj A. Reverse-biased p-n junction + VR – VR B. MOSFET accumulation capacitance Cg p-channel – VBG + n diffusion in n-well VBG accumulation region EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine inversion region 20 LC VCO Variations (1) IS 2L C C C C 2L 2L C IS 2L C C C ISS EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 21 LC VCO Variations (2) 2L 2L C C C C ISS Voltage-controlled topology • • Current-controlled topology DC biasing set by VDD dropped directly across diode-connected transistors • DC biasing set by ISS • Amplitude limited by ISS Amplitude limited by VDD EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 22 Effect of CML Loading 1. 1. ideal capacitor load 1 nH 3.8 400 fF 400 fF 108 fF 108 fF 2. Cg = 108fF 1 nH 3.8 400 fF 400 fF 2. CML buffer load EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 23 CML Buffer Input Admittance (1) Yin = jwCgs + jwCgd A0 × A0 = 1+ gm R ( 1+ jw / z 1+ jw / p ) where: 1/ p = CL +Cgd R 1/ z = ( ) (note p < z) CL R A0 Re Yin = A0Cgd w 2 × 1 p -1 z ( 1+ w p ) 2 Substantial parallel loss at high frequencies weakens VCO’s tendency to oscillate EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 24 CML Buffer Input Admittance (2) Yin magnitude/phase: Yin real part/imaginary part: magnitude imaginary phase real Contributes 2k additional parallel resistance EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 25 CML Buffer Input Admittance (3) 3. CML tuned buffer load Cg = 108 fF 1 nH imaginary 3.8 400 fF 400 fF 3.8 nH real Contributes negative parallel resistance EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 26 CML Buffer Input Admittance (4) ideal capacitor load Cg = 108 fF 1 nH 3.8 400 fF 400 fF 3.8 nH CML buffer load Loading VCO with tuned CML buffer allows negative real part at high frequencies more robust oscillation! EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine CML tuned buffer load 27 Differential Control of LC VCO Differential VCO control is preferred to reduce VC noise coupling into PLL output. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 28 Achieving Wide LC VCO Frequency Range VCO characteristic: Banded VCO characteristic: fosc fosc freq. range freq. range slope = Kvco VC VC For a given Kvco how can we increase the VCO’s frequency range? EECS 270C / Winter 2016 Coarse tuning selects the individual band; fine tuning is set by VC. Prof. M. Green / U.C. Irvine 29 LC VCO with Banding coarse tuning fine tuning EECS 270C / Winter 2016 VC Prof. M. Green / U.C. Irvine 30 Oscillator Type Comparison Ring Oscillator LC Oscillator – slower + faster – low Q more jitter generation + high Q less jitter generation + Control voltage can be applied differentially – Control voltage applied single-ended + Easier to design; behavior more predictable – Inductors & varactors make design more difficult and behavior less predictable + Less chip area – More chip area (inductor) EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 31 Random Processes (1) Random variable: A quantity X whose value is not exactly known. Probability distribution function PX(x): The probability that a random variable X is less than or equal to a value x. PX(x) 1 Example 1: Random variable X Î [-¥,+¥] 0.5 x EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 32 Random Processes (2) Probability of X within a range is straightforward: PX(x) 1 ( 0.5 ) P X Î [x1, x2 ] = P(x 2 ) - P(x1) x1 x2 x If we let x2-x1 become very small … EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 33 Random Processes (3) Probability density function pX(x): Probability that random variable X lies within the range of x and x+dx. pX (x) ×dx = PX (x + dx) - PX (x) Þ pX (x) = ( ) ò P X Î [ x 1, x 2 ] = dPX (x) dx PX(x) x2 x1 pX (x) dx pX(x) 1 0.5 dx EECS 270C / Winter 2016 x x Prof. M. Green / U.C. Irvine 34 Random Processes (4) Expectation value E[X]: Expected (mean) value of random variable X over a large number of samples. +¥ ò x ×p E[X ] º X = X (x)dx -¥ Mean square value E[X2]: Mean value of the square of a random variable X2 over a large number of samples. +¥ E[X 2 ] = òx 2 × p X (x)dx -¥ Variance: [ +¥ ] E (X - X ) º s = 2 2 ò (x - X ) p X (x)dx -¥ [ Standard deviation: s = E (X - X )2 EECS 270C / Winter 2016 2 ] Prof. M. Green / U.C. Irvine 35 Gaussian Function 1. Provides a good model for the probability density functions of many random phenomena. 2. Can be easily characterized mathematically s , X . 3. Combinations of Gaussian random variables are themselves Gaussian. ( ) f (x) 1 s 2p é -(x - X )2 ù ú f (x) = expê 2 êë 2s úû s 2p 1 0.607 s 2p 2 +¥ ò f (x)dx = 1 X -s -¥ EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine X X +s x 36 Joint Probability (1) Consider 2 random variables: ( P(x, y) º P X £ x and Y £ y ) If X and Y are statistically independent (i.e., uncorrelated): ( ) P X Î [ x, x + dx ] and Y Î [ y, y + dy ] = pX (x) × pY (y) ×dx dy EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 37 Joint Probability (2) Consider sum of 2 random variables: Z = X +Y ( ) òò é =ê ò ë P Z Î [ z0, z0 + dz] = y strip pX (x)pY (y) dx dy ù p X (x)pY (z0 - x) dx ú dz -¥ û ¥ x + y = z0 + dz pZ (z0 ) dy = dz x + y = z0 dx EECS 270C / Winter 2016 determined by convolution of pX and pY. x Prof. M. Green / U.C. Irvine 38 Joint Probability (3) Example: Consider the sum of 2 non-Gaussian random processes: * EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 39 Joint Probability (4) 3 sources combined: * EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 40 Joint Probability (5) 4 sources combined: * EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 41 Joint Probability (6) Noise sources Central Limit Theorem: Superposition of random variables tends toward normality. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 42 Fourier transform of Gaussians: pX (x) = é 2ù -(x X ) ú expê ê 2s 2 ú 2p ë û X 1 sX æ 1 2 2ö PX (w) = expç- s X w ÷ è 2 ø F Recall: é P Z Î [ z0, z0 + dz] = ê ë ( ù p X (x)pY (z0 - x) dx ú dz -¥ û ) ò pZ (z0 ) = ò ¥ -¥ ¥ pX (x)pY (z0 - x) dx F PZ (w) = PX (w) ×PY (w) æ 1 2 2ö æ 1 2 2ö = expç- s X w ÷ ×expç- sY w ÷ è 2 ø è 2 ø pZ (z) = 1 ( 2p s 2X + s Y2 ) é -(z - Z)2 expê ê2 s 2 +s 2 X Y ë ( ) ù ú ú û F -1 æ 1 ö = expç- (s 2X + s 2X )w 2 ÷ è 2 ø Variances of sum of random normal processes add. EECS 270C / Winter 2016 Prof. M. Green / U.C. Irvine 43 Autocorrelation function RX(t1,t2): Expected value of the product of 2 samples of a random variable at times t1 & t2. RX (t1,t2 ) = E [ X (t1) × X (t2 )] For a stationary random process, RX depends only on the time difference t = t1 - t 2 RX (t ) = E [ X (t) × X (t + t )] for any t 2 Note RX (0) = s Power spectral density SX(): 2ù é +¥ ê ú SX (w ) = Eê X (t) ×e - jwt dt ú êë -¥ úû ò EECS 270C / Winter 2016 SX() given in units of [dBm/Hz] Prof. M. Green / U.C. Irvine 44 Relationship between spectral density & autocorrelation function: 1 RX (t ) = 2p ò ¥ -¥ SX (w) ×e jwt dw ò 1 Þ RX (0) = s = 2p 2 ¥ -¥ SX (w)dw infinite variance (non-physical) Example 1: white noise SX (w) ( ) SX w = K EECS 270C / Winter 2016 RX (t ) RX (t ) = Prof. M. Green / U.C. Irvine K ×d t 2p () 45 Example 2: band-limited white noise RX (t ) SX (w) 1 2 s 2 = Kw p K -w p ( ) SX w = wp K RX (t ) = s 2e -w p t w2 1+ 2 wp pX (x) For parallel RC circuit capacitor voltage noise: wp = 1 RC EECS 270C / Winter 2016 s V2C = kBT C -s Prof. M. Green / U.C. Irvine +s x 46