* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Probability of Complements and Unions of Events
Survey
Document related concepts
Transcript
TheProbabilityofComplementsandUnionsofEvents Theorem1:LetE beaneventinsamplespaceS.Theprobability oftheevent =S− E,thecomplementaryeventofE,isgiven by Proof:Usingthefactthat| | =|S| − |E|, Networking Platform 1 Extensible - CSE 240 – Logic and Discrete Mathematics 1 TheProbabilityofComplementsandUnionsofEvents Example:Asequenceof10 bitsischosenrandomly.Whatisthe probabilitythatatleastoneofthesebitsis0? Solution:LetE betheeventthatatleastoneofthe10bitsis0. Then istheeventthatallofthebitsare1s.Thesizeofthe samplespaceS is210.Hence, Networking Platform 2 Extensible - CSE 240 – Logic and Discrete Mathematics 2 TheProbabilityofComplementsandUnionsofEvents Theorem2:LetE1 andE2 beeventsinthesamplespaceS. Then Proof:Giventheinclusion-exclusionformulafromSection2.2,|A ∪B|=|A|+|B|−|A ∩B|,itfollowsthat Networking Platform 3 Extensible - CSE 240 – Logic and Discrete Mathematics 3 CombinationsofEvents Theorem:IfE1,E2,…isasequenceofpairwise disjointeventsinasamplespaceS,then •see Exercises 36 and 37 for the proof Networking Platform 4 Extensible - CSE 240 – Logic and Discrete Mathematics 4 Probability Whichismorelikely: a) Rollingan8when2dicearerolled? b) Rollingan8when3dicearerolled? c) Noclue. Networking Platform 5 Extensible - CSE 240 – Logic and Discrete Mathematics 5 Probability Whatistheprobabilityofatotalof8when2diceare rolled? Whatisthesizeofthesamplespace? 36 Howmanyrollssatisfyourconditionofinterest? 5 Sotheprobabilityis5/36~= 0.139 Networking Platform 6 Extensible - CSE 240 – Logic and Discrete Mathematics 6 Combinationswithrepetition • ThereareC(n+r-1,r)r-sizedcombinationsfromasetofn elementswhenrepetitionisallowed. • Example:Howmanysolutionsaretheretotheequation x1 + x 2 + x 3 + x 4 = 10 • Whenthevariablesarenonnegativeintegers? C(13,3) • Each#iscontribute1tothesumof10andsincewe € have4numbers,thenweneed3barstoseparatethe numbersandwecanplacethebarsnexttoeachother è wehave13spotstochoosewheretoplaceeach individualbar. •Onepossiblevalueis Networking Platform 7 Extensible - CSE 240 – Logic and Discrete Mathematics 1 + 3 + 6 + 0 = 10 7 Probability Whatistheprobabilityofatotalof8when3diceare rolled? Whatisthesizeofthesamplespace? 216 Howmanyrollssatisfyourconditionofinterest? C(7,2) Sotheprobabilityis21/216~=0.097 Networking Platform 8 Extensible - CSE 240 – Logic and Discrete Mathematics 8 ConditionalProbability LetEandFbeeventswithPr(F)>0.Theconditional probabilityofEgivenF,denotedbyPr(E|F)isdefinedto be: Pr(E|F)=Pr(EÇF)/Pr(F). E Networking Platform 9 Extensible - CSE 240 – Logic and Discrete Mathematics F 9 GroupProblem • Anurncontainsfourblueballsandfiveredballs. Whatistheprobabilitythataballchosenfrom theurnisblue? • Whatistheprobabilitythatwhentwodiceare rolled,thesumofthenumbersonthetwodiceis 7? Extensible Networking Platform 10 - CSE 240 – Logic and Discrete Mathematics 10 GroupProblem • Anurncontainsfourblueballsandfiveredballs.Whatisthe probabilitythataballchosenfromtheurnisblue? – Theprobabilitythattheballischosenis4/9sincethereare ninepossibleoutcomes,andfouroftheseproduceablue ball. • Whatistheprobabilitythatwhentwodicearerolled,thesum ofthenumbersonthetwodiceis7? – Bytheproductrulethereare62 =36possibleoutcomes.Sixof thesesumto7.Hence,theprobabilityofobtaininga7 is6/36= 1/6. Networking Platform 11Extensible - CSE 240 – Logic and Discrete Mathematics 11 GroupProblem • Anurncontainsfourblueballsandfiveredballs. Whatistheprobabilitythataballchosenfrom theurnisblue? • Whatistheprobabilitythatwhentwodiceare rolled,thesumofthenumbersonthetwodiceis 7? Extensible Networking Platform 12 - CSE 240 – Logic and Discrete Mathematics 12 GroupProblem • Anurncontainsfourblueballsandfiveredballs.Whatisthe probabilitythataballchosenfromtheurnisblue? – Theprobabilitythattheballischosenis4/9sincethereare ninepossibleoutcomes,andfouroftheseproduceablue ball. • Whatistheprobabilitythatwhentwodicearerolled,thesum ofthenumbersonthetwodiceis7? – Bytheproductrulethereare62 =36possibleoutcomes.Sixof thesesumto7.Hence,theprobabilityofobtaininga7 is6/36= 1/6. Extensible Networking Platform 13 - CSE 240 – Logic and Discrete Mathematics 13 GroupProblem Example:Whatistheprobabilitythatthenumbers 11,4,17,39, and23aredrawninthatorderfrom abinwith50 ballslabeledwiththenumbers1,2, …,50if a) Theballselectedisnotreturnedtothebin. b) Theballselectedisreturnedtothebinbeforethe nextballisselected. Extensible Networking Platform 14 - CSE 240 – Logic and Discrete Mathematics 14 GroupProblem Example:Whatistheprobabilitythatthenumbers11,4,17,39, and23aredrawninthatorderfromabinwith50 balls labeledwiththenumbers1,2,…,50if a) Theballselectedisnotreturnedtothebin. b) Theballselectedisreturnedtothebinbeforethenextball isselected. – Samplingwithoutreplacement:Theprobabilityis 1/254,251,200sincethereare50∙49∙47∙46 ∙45= 254,251,200waystochoosethefiveballs. – Samplingwithreplacement:Theprobabilityis 1/505 =1/312,500,000since505 =312,500,000. Extensible Networking Platform 15 - CSE 240 – Logic and Discrete Mathematics 15 Independence Definition:TheeventsE andF areindependentifandonlyif p(E⋂F) = p(E)p(F). Example:SupposeE istheeventthatarandomlygeneratedbitstringof lengthfourbeginswitha1andF istheeventthatthisbitstringcontains anevennumberof1s.AreE andF independentifthe16bitstringsof lengthfourareequallylikely? Solution:Thereareeightbitstringsoflengthfourthatbeginwitha1,and eightbitstringsoflengthfourthatcontainanevennumberof1s. – Sincethenumberofbitstringsoflength4is16, p(E) =p(F)=8/16=½. – SinceE⋂F={1111,1100,1010,1001},p(E⋂F)=4/16=1/4. WeconcludethatEandFareindependent,because p(E⋂F)=1/4=(½)(½)=p(E)p(F) Extensible Networking Platform 16 - CSE 240 – Logic and Discrete Mathematics 16 RandomVariables ForagivensamplespaceS,arandomvariable isanyreal valuedfunctiononS. S -2 • 0 2 Supposeourexperimentisarollof2dice.Sissetofpairs. X=sumoftwodice. Y=differencebetweentwodice. Z=maxoftwodice. Extensible Networking Platform 17 - CSE 240 – Logic and Discrete Mathematics X((2,3))=5 Y((2,3))=1 Z((2,3))=3 17 RandomVariables Example: Supposeweareplayingagamewithcardslabeled1to20, andwedraw3cards.Webetthatthemaximumcard hasvalue17orgreater.What’stheprobabilitywewin thebet? Letr.v.Xdenotethemaximumcardvalue.ThepossiblevaluesforXare3, 4,5,…,20. i 3 4 5 6 7 8 9 … Pr(X = i) ? ? ? ? ? ? ? 20 ? Fillinginthisboxwouldbeapain.Welookforageneralformula. Extensible Networking Platform 18 - CSE 240 – Logic and Discrete Mathematics 18 RandomVariables Xisvalueofthehighestcardamongthe3selected.20 cardsarelabeled1through20. WewantPr(X=i),i=3,…20. Denominatorfirst:Howmanywaysaretheretoselectthe3 cards? C(20,3) Howmanychoicesaretherethatresultinamaxcardwhose valueisi? C(i-1,2) Pr(X=i)=C(i-1,2)/C(20,3) Thesearethetablevalues. Wewinthebetifthemaxcard,Xis17orgreater.What’stheprobability wewin? Pr(X=17)+Pr(X=18)+Pr(X=19)+Pr(X=20) Extensible Networking Platform 19 - CSE 240 – Logic and Discrete Mathematics »0.51 19 PracticeProblem Aclasshas20womenand13men.Acommitteeoffiveis chosenatrandom.Find (a)p (thecommitteeconsistsofallwomen). (b)p (thecommitteeconsistsofallmen) (c)p (thecommitteeconsistsofallofthesamesex) Extensible Networking Platform 20 - CSE 240 – Logic and Discrete Mathematics 20 Solutions 1)Aclasshas20womenand13men.Acommitteeoffiveis chosenatrandom. (a) C(20,5)/C(33,5) (b) C(13,5)/C(33,5) (c) (C(20,5)+C(13,5))/C(33,5) Extensible Networking Platform 21 - CSE 240 – Logic and Discrete Mathematics 21