* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Probability of Complements and Unions of Events
Survey
Document related concepts
Transcript
TheProbabilityofComplementsandUnionsofEvents
Theorem1:LetE beaneventinsamplespaceS.Theprobability
oftheevent =S− E,thecomplementaryeventofE,isgiven
by
Proof:Usingthefactthat| | =|S| − |E|,
Networking
Platform
1 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
1
TheProbabilityofComplementsandUnionsofEvents
Example:Asequenceof10 bitsischosenrandomly.Whatisthe
probabilitythatatleastoneofthesebitsis0?
Solution:LetE betheeventthatatleastoneofthe10bitsis0.
Then istheeventthatallofthebitsare1s.Thesizeofthe
samplespaceS is210.Hence,
Networking
Platform
2 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
2
TheProbabilityofComplementsandUnionsofEvents
Theorem2:LetE1 andE2 beeventsinthesamplespaceS.
Then
Proof:Giventheinclusion-exclusionformulafromSection2.2,|A
∪B|=|A|+|B|−|A ∩B|,itfollowsthat
Networking
Platform
3 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
3
CombinationsofEvents
Theorem:IfE1,E2,…isasequenceofpairwise
disjointeventsinasamplespaceS,then
•see Exercises 36 and 37 for the
proof
Networking
Platform
4 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
4
Probability
Whichismorelikely:
a) Rollingan8when2dicearerolled?
b) Rollingan8when3dicearerolled?
c) Noclue.
Networking
Platform
5 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
5
Probability
Whatistheprobabilityofatotalof8when2diceare
rolled?
Whatisthesizeofthesamplespace?
36
Howmanyrollssatisfyourconditionofinterest?
5
Sotheprobabilityis5/36~=
0.139
Networking
Platform
6 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
6
Combinationswithrepetition
• ThereareC(n+r-1,r)r-sizedcombinationsfromasetofn
elementswhenrepetitionisallowed.
• Example:Howmanysolutionsaretheretotheequation
x1 + x 2 + x 3 + x 4 = 10
• Whenthevariablesarenonnegativeintegers?
C(13,3)
• Each#iscontribute1tothesumof10andsincewe
€
have4numbers,thenweneed3barstoseparatethe
numbersandwecanplacethebarsnexttoeachother
è wehave13spotstochoosewheretoplaceeach
individualbar.
•Onepossiblevalueis
Networking
Platform
7 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
1 + 3 + 6 + 0 = 10
7
Probability
Whatistheprobabilityofatotalof8when3diceare
rolled?
Whatisthesizeofthesamplespace?
216
Howmanyrollssatisfyourconditionofinterest?
C(7,2)
Sotheprobabilityis21/216~=0.097
Networking
Platform
8 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
8
ConditionalProbability
LetEandFbeeventswithPr(F)>0.Theconditional
probabilityofEgivenF,denotedbyPr(E|F)isdefinedto
be:
Pr(E|F)=Pr(EÇF)/Pr(F).
E
Networking
Platform
9 Extensible
- CSE 240 – Logic
and Discrete
Mathematics
F
9
GroupProblem
• Anurncontainsfourblueballsandfiveredballs.
Whatistheprobabilitythataballchosenfrom
theurnisblue?
• Whatistheprobabilitythatwhentwodiceare
rolled,thesumofthenumbersonthetwodiceis
7?
Extensible
Networking
Platform
10
- CSE 240 – Logic
and Discrete
Mathematics
10
GroupProblem
• Anurncontainsfourblueballsandfiveredballs.Whatisthe
probabilitythataballchosenfromtheurnisblue?
– Theprobabilitythattheballischosenis4/9sincethereare
ninepossibleoutcomes,andfouroftheseproduceablue
ball.
• Whatistheprobabilitythatwhentwodicearerolled,thesum
ofthenumbersonthetwodiceis7?
– Bytheproductrulethereare62 =36possibleoutcomes.Sixof
thesesumto7.Hence,theprobabilityofobtaininga7 is6/36=
1/6.
Networking
Platform
11Extensible
- CSE 240 – Logic
and Discrete
Mathematics
11
GroupProblem
• Anurncontainsfourblueballsandfiveredballs.
Whatistheprobabilitythataballchosenfrom
theurnisblue?
• Whatistheprobabilitythatwhentwodiceare
rolled,thesumofthenumbersonthetwodiceis
7?
Extensible
Networking
Platform
12
- CSE 240 – Logic
and Discrete
Mathematics
12
GroupProblem
• Anurncontainsfourblueballsandfiveredballs.Whatisthe
probabilitythataballchosenfromtheurnisblue?
– Theprobabilitythattheballischosenis4/9sincethereare
ninepossibleoutcomes,andfouroftheseproduceablue
ball.
• Whatistheprobabilitythatwhentwodicearerolled,thesum
ofthenumbersonthetwodiceis7?
– Bytheproductrulethereare62 =36possibleoutcomes.Sixof
thesesumto7.Hence,theprobabilityofobtaininga7 is6/36=
1/6.
Extensible
Networking
Platform
13
- CSE 240 – Logic
and Discrete
Mathematics
13
GroupProblem
Example:Whatistheprobabilitythatthenumbers
11,4,17,39, and23aredrawninthatorderfrom
abinwith50 ballslabeledwiththenumbers1,2,
…,50if
a) Theballselectedisnotreturnedtothebin.
b) Theballselectedisreturnedtothebinbeforethe
nextballisselected.
Extensible
Networking
Platform
14
- CSE 240 – Logic
and Discrete
Mathematics
14
GroupProblem
Example:Whatistheprobabilitythatthenumbers11,4,17,39,
and23aredrawninthatorderfromabinwith50 balls
labeledwiththenumbers1,2,…,50if
a) Theballselectedisnotreturnedtothebin.
b) Theballselectedisreturnedtothebinbeforethenextball
isselected.
–
Samplingwithoutreplacement:Theprobabilityis
1/254,251,200sincethereare50∙49∙47∙46 ∙45=
254,251,200waystochoosethefiveballs.
–
Samplingwithreplacement:Theprobabilityis
1/505 =1/312,500,000since505 =312,500,000.
Extensible
Networking
Platform
15
- CSE 240 – Logic
and Discrete
Mathematics
15
Independence
Definition:TheeventsE andF areindependentifandonlyif
p(E⋂F) = p(E)p(F).
Example:SupposeE istheeventthatarandomlygeneratedbitstringof
lengthfourbeginswitha1andF istheeventthatthisbitstringcontains
anevennumberof1s.AreE andF independentifthe16bitstringsof
lengthfourareequallylikely?
Solution:Thereareeightbitstringsoflengthfourthatbeginwitha1,and
eightbitstringsoflengthfourthatcontainanevennumberof1s.
– Sincethenumberofbitstringsoflength4is16,
p(E) =p(F)=8/16=½.
– SinceE⋂F={1111,1100,1010,1001},p(E⋂F)=4/16=1/4.
WeconcludethatEandFareindependent,because
p(E⋂F)=1/4=(½)(½)=p(E)p(F)
Extensible
Networking
Platform
16
- CSE 240 – Logic
and Discrete
Mathematics
16
RandomVariables
ForagivensamplespaceS,arandomvariable isanyreal
valuedfunctiononS.
S
-2
• 0
2
Supposeourexperimentisarollof2dice.Sissetofpairs.
X=sumoftwodice.
Y=differencebetweentwodice.
Z=maxoftwodice.
Extensible
Networking
Platform
17
- CSE 240 – Logic
and Discrete
Mathematics
X((2,3))=5
Y((2,3))=1
Z((2,3))=3
17
RandomVariables
Example:
Supposeweareplayingagamewithcardslabeled1to20,
andwedraw3cards.Webetthatthemaximumcard
hasvalue17orgreater.What’stheprobabilitywewin
thebet?
Letr.v.Xdenotethemaximumcardvalue.ThepossiblevaluesforXare3,
4,5,…,20.
i
3 4 5 6 7 8 9 …
Pr(X = i) ? ?
?
?
?
?
?
20
?
Fillinginthisboxwouldbeapain.Welookforageneralformula.
Extensible
Networking
Platform
18
- CSE 240 – Logic
and Discrete
Mathematics
18
RandomVariables
Xisvalueofthehighestcardamongthe3selected.20
cardsarelabeled1through20.
WewantPr(X=i),i=3,…20.
Denominatorfirst:Howmanywaysaretheretoselectthe3
cards?
C(20,3)
Howmanychoicesaretherethatresultinamaxcardwhose
valueisi?
C(i-1,2)
Pr(X=i)=C(i-1,2)/C(20,3)
Thesearethetablevalues.
Wewinthebetifthemaxcard,Xis17orgreater.What’stheprobability
wewin?
Pr(X=17)+Pr(X=18)+Pr(X=19)+Pr(X=20)
Extensible
Networking
Platform
19
- CSE 240 – Logic
and Discrete
Mathematics
»0.51
19
PracticeProblem
Aclasshas20womenand13men.Acommitteeoffiveis
chosenatrandom.Find
(a)p (thecommitteeconsistsofallwomen).
(b)p (thecommitteeconsistsofallmen)
(c)p (thecommitteeconsistsofallofthesamesex)
Extensible
Networking
Platform
20
- CSE 240 – Logic
and Discrete
Mathematics
20
Solutions
1)Aclasshas20womenand13men.Acommitteeoffiveis
chosenatrandom.
(a) C(20,5)/C(33,5)
(b) C(13,5)/C(33,5)
(c) (C(20,5)+C(13,5))/C(33,5)
Extensible
Networking
Platform
21
- CSE 240 – Logic
and Discrete
Mathematics
21