Download X - ULB

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Corporate Finance
Risk and Return
Prof. André Farber
SOLVAY BUSINESS SCHOOL
UNIVERSITÉ LIBRE DE BRUXELLES
Risk and return
• Objectives for this session:
• 1. Review
• 2. Efficient set
• 3. Optimal portfolio
• 4. CAPM
A.Farber Vietnam 2004
|2
Review : Risk and expected returns for
porfolios
• In order to better understand the driving force explaining the benefits
from diversification, let us consider a portfolio of two stocks (A,B)
• Characteristics:
– Expected returns :
– Standard deviations :
– Covariance :
RA , RB
 A , B
 AB   AB A B
• Portfolio: defined by fractions invested in each stock XA , XB
XA+ XB= 1
• Expected return on portfolio:
• Variance of the portfolio's return:
RP  X A RA  X B RB
 P2  X A2 A2  2 X A X B AB  X B2 B2
A.Farber Vietnam 2004
|3
The efficient set for two assets: correlation
=0
A.Farber Vietnam 2004
|4
Example
Riskless rate
A
B
Correlation
Exp.Return
5
15
20
0
Prop.
0.50
0.50
A
B
Sigma
0
20
30
Variance
0
400
900
Variance-covariance
400
0
0
900
Cov(Ri,Rp)
X
200.00
0.50
Variance
S t.de v.
Exp.Ret. Rp
450.00
0.50
325.00
18.03
17.50
A.Farber Vietnam 2004
|5
Marginal contribution to risk: some math
• Consider portfolio M. What happens if the fraction invested in stock I
changes?
• Consider a fraction X invested in stock i
 P2  (1  X ) 2  M2  2 X (1  X ) iM  X 2 i2
• Take first derivative with respect to X for X = 0
d P2
 2( iM   M2 )
dX X 0
• Risk of portfolio increase if and only if:
 iM  
2
M
• The marginal contribution of stock i to the risk is
 iM
A.Farber Vietnam 2004
|6
Marginal contribution to risk: illustration
35.00
30.00
Risk of portfolio
25.00
20.00
15.00
10.00
5.00
0.00
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
Fraction in B
Cor = 0
Cor = 0.25
Cor = 0.50
Cor = 0.75
Cor = 1.0
A.Farber Vietnam 2004
|7
1
Choosing portfolios from many stocks
• Porfolio composition :
 (X1, X2, ... , Xi, ... , XN)
 X1 + X2 + ... + Xi + ... + XN = 1
RP  X 1 R1  X 2 R2  ...  X N RN
• Expected return:
 P2   X 2j  2j   X i X j ij   X i X j ij
• Risk:
j
i
j i
i
j
• Note:
 N terms for variances
 N(N-1) terms for covariances
 Covariances dominate
A.Farber Vietnam 2004
|8
Some intuition
Var
Cov
Cov
Cov
Cov
Cov
Var
Cov
Cov
Cov
Cov
Cov
Var
Cov
Cov
Cov
Cov
Cov
Var
Cov
Cov
Cov
Cov
Cov
Var
A.Farber Vietnam 2004
|9
The efficient set for many securities
•
Portfolio choice: choose an efficient portfolio
•
Efficient portfolios maximise expected return for a given risk
•
They are located on the upper boundary of the shaded region (each point in
this region correspond to a given portfolio)
Expected
Return











Risk
A.Farber Vietnam 2004
|10
Choosing between 2 risky assets
•
Choose the asset with the highest
ratio of excess expected return to
risk:
Sharpe ratio 
•
Exp.Return
Expected return
Ri  RF
B
i
A
Example: RF = 6%
•
A
Risk
•
A
9%
10%
•
B
15%
20%
•
Asset Sharpe ratio
•
A (9-6)/10 = 0.30
•
B (15-6)/20 = 0.45 **
Risk
A.Farber Vietnam 2004
|11
Optimal portofolio with borrowing and
lending
Optimal portfolio:
maximize Sharpe ratio
A.Farber Vietnam 2004
|12
Capital asset pricing model (CAPM)
•
Sharpe (1964) Lintner (1965)
•
Assumptions
 Perfect capital markets
 Homogeneous expectations
•
Main conclusions: Everyone picks the same optimal portfolio
•
Main implications:
– 1. M is the market portfolio : a market value weighted portfolio of all stocks
– 2. The risk of a security is the beta of the security:
•
Beta measures the sensitivity of the return of an individual security to
the return of the market portfolio
•
The average beta across all securities, weighted by the proportion of
each security's market value to that of the market is 1
A.Farber Vietnam 2004
|13
Optimal portfolio: property
RM  R F
Slope =
M
M
xj
RF
Slope =
R j  RM

2
jM   M
 M
A.Farber Vietnam 2004
|14
Risk premium and beta
• 3. The expected return on a security is positively related to its beta
• Capital-Asset Pricing Model (CAPM) :
R  R F  ( RM  R F )  
• The expected return on a security equals:
the risk-free rate
plus
the excess market return (the market risk premium)
times
Beta of the security
A.Farber Vietnam 2004
|15
CAPM - Illustration
Expected Return
RM
RF
1
Beta
A.Farber Vietnam 2004
|16
CAPM - Example
•
Assume:
Risk-free rate = 6%
•
Market risk premium = 8.5%
Beta
Expected Return (%)
•
American Express
1.5
18.75
•
BankAmerica
1.4
17.9
•
Chrysler
1.4
17.9
•
Digital Equipement
1.1
15.35
•
Walt Disney
0.9
13.65
•
Du Pont
1.0
14.5
•
AT&T
0.76
12.46
•
General Mills
0.5
10.25
•
Gillette
0.6
11.1
•
Southern California Edison 0.5
10.25
•
Gold Bullion
5.40
-0.07
A.Farber Vietnam 2004
|17
Pratical implications
• Efficient market hypothesis + CAPM: passive investment
 Buy index fund
 Choose asset allocation
A.Farber Vietnam 2004
|18
Related documents