Download Solution - Career Launcher

Document related concepts
no text concepts found
Transcript
Mathematics
Session
Cartesian Coordinate Geometry
And
Straight Lines
Session Objectives
1. Cartesian Coordinate system and
Quadrants
2. Distance formula
3. Area of a triangle
4. Collinearity of three points
5. Section formula
6. Special points in a triangle
7. Locus and equation to a locus
8. Translation of axes - shift of
origin
9. Translation of axes - rotation of
axes
René Descartes
Y
Y-axis : Y’OY
3
2
X-axis : X’OX
O
-4
-3
-2
-1
X
1
-1
Origin
-2
-ve direction
Y’
-3
2
-ve direction
X’
1
+ve direction
Coordinates
3
4
+ve direction
Coordinates
Y
3
2
Abcissa
1
X’
(2,1)
O
-4
-3
-2
-1
X
1
-1
Ordinate
2
3
4
-2
(-3,-2)
Y’
-3
(?,?)
Coordinates
Y
3
2
Abcissa
1
X’
(2,1)
O
-4
-3
-2
-1
X
1
-1
Ordinate
2
3
4
-2
(-3,-2)
Y’
-3
(4,?)
Coordinates
Y
3
2
Abcissa
1
X’
(2,1)
O
-4
-3
-2
-1
X
1
-1
Ordinate
2
3
4
-2
(-3,-2)
Y’
-3
(4,-2.5)
Quadrants
Y
(-,+)
X’
II
(+,+)
O
IV
III
(-,-)
I
Y’
(+,-)
X
Quadrants
Y
(-,+) (+,+)
X’
II
O
X
IV
III
(-,-)
I
Y’
(+,-)
Ist? IInd?
Q : (1,0) lies in which Quadrant?
A : None. Points which lie on the axes do not lie in any
quadrant.
Distance Formula
x1
X’ O
Y’
(x2-x1)
x2
 PQ 
PQN is a right angled .
y1
N
y2
y2-y1
Y
 PQ2 = PN2 + QN2
 PQ2 = (x2-x1)2+(y2-y1)2
X
2
 x2  x1 
2
  y2  y1 
Distance From Origin
Distance of P(x, y) from the
origin is
2
2

 x  0   y  0

x2  y2
Applications of Distance Formula
Parallelogram
Applications of Distance Formula
Rhombus
Applications of Distance Formula
Rectangle
Applications of Distance Formula
Square
Area of a Triangle
A(x1, y1)
B(x2, y2)
Y
X’ O
M
C(x3, y3)
L
N
X
Y’
Area of  ABC =
Area of trapezium ABML + Area of trapezium ALNC
- Area of trapezium BMNC
Area of a Triangle
X’O
Y’
A(x1, y1)
B(x2, y2)
Y
M
C(x3, y3)
L
N
X
Area of trapezium ABML + Area of trapezium ALNC
- Area of trapezium BMNC
1
1
1
 BM  AL  ML    AL  CN LN  BM  CN MN
2
2
2
1
1
1
  y2  y1   x1  x2    y1  y3   x3  x1    y2  y3   x3  x2 
2
2
2
x1 y1 1 Sign of Area : Points anticlockwise  +ve
1
 x2 y2 1
Points clockwise
 -ve
2
x3 y3 1
Area of Polygons
Area of polygon with points Ai  (xi, yi)
where i = 1 to n
1  x1
 
2  x2
y1
y2

x2
y2
x3
y3
 ... 
xn 1
yn 1
xn
yn

Can be used to calculate
area of Quadrilateral,
Pentagon, Hexagon etc.
xn
x1
yn 

y1 
Collinearity of Three Points
Method I :
Use Distance Formula
a
b
c
Show that a+b = c
Collinearity of Three Points
Method II :
Use Area of Triangle
A  (x1, y1)
B  (x2, y2)
C  (x3, y3)
Show that
x1
y1 1
x2
y2 1  0
x3
y3 1
Section Formula – Internal Division
Y
K
H
X’ O
L
N
M
Y’
 mx2  nx1 my2  ny1 
P  
,

m

n
m

n


Clearly AHP ~ PKB
AP AH PH



BP PK BK
y  y1
X
m x  x1



n
x2  x y2  y
Midpoint
Midpoint of A(x1, y1) and B(x2,y2)
m:n  1:1
 x1  x2 y1  y2 
P  
,

2
2


Section Formula – External Division
Y
P divides AB externally in ratio m:n
K
H
X’ O
Y’
L
N
M
Clearly PAH ~ PBK
AP AH PH



BP BK PK
y  y1
X
m x  x1



n
x  x2 y  y2
 mx2  nx1 my2  ny1 
P  
,

m

n
m

n


Centroid
Intersection of medians of a
triangle is called the centroid.
A(x1, y1)
F
B(x2, y2)
E
G
D
 x  x3 y2  y3 
D 2
,

2
2


 x  x3 y1  y3 
E 1
,

2
2


C(x3, y3)
Centroid is
always denoted
by G.
 x  x2 y1  y2 
F 1
,

2
2


Centroid
A(x1, y1)
F
B(x2, y2)
E
G
D
 x  x3 y1  y3 
E 1
,

2
2


 x  x3 y2  y3 
D 2
,

2
2


C(x3, y3)
 x  x2 y1  y2 
F 1
,

2
2


Consider points L, M, N dividing AD, BE
and CF respectively in the ratio 2:1
x2  x3
y2  y3

x

2
y

2
1
 1
2
2
L 
,
12
12







Centroid
A(x1, y1)
F
B(x2, y2)
E
G
D
 x  x3 y1  y3 
E 1
,

2
2


 x  x3 y2  y3 
D 2
,

2
2


C(x3, y3)
 x  x2 y1  y2 
F 1
,

2
2


Consider points L, M, N dividing AD, BE
and CF respectively in the ratio 2:1
x1  x3
y1  y3

x

2
y

2
2
 2
2
2
M
,
12
12







Centroid
A(x1, y1)
F
B(x2, y2)
E
G
D
 x  x3 y1  y3 
E 1
,

2
2


 x  x3 y2  y3 
D 2
,

2
2


C(x3, y3)
 x  x2 y1  y2 
F 1
,

2
2


Consider points L, M, N dividing AD, BE
and CF respectively in the ratio 2:1
x1  x2
y1  y2

x

2
y

2
3
 3
2
2
N
,
12
12







Centroid
A(x1, y1)
F
B(x2, y2)
E
G
D
 x  x3 y1  y3 
E 1
,

2
2


 x  x3 y2  y3 
D 2
,

2
2


C(x3, y3)
 x  x2 y1  y2 
F 1
,

2
2


 x  x2  x3 y1  y2  y3 
L  1
,

3
3


 x  x2  x3 y1  y2  y3 
M 1
,

3
3


 x  x2  x3 y1  y2  y3 
N 1
,

3
3


We see that L  M  N  G
Medians are
concurrent at the
centroid, centroid
divides medians in
ratio 2:1
Centroid
A(x1, y1)
F
B(x2, y2)
E
G
D
 x  x3 y1  y3 
E 1
,

2
2


 x  x3 y2  y3 
D 2
,

2
2


C(x3, y3)
 x  x2 y1  y2 
F 1
,

2
2


 x  x2  x3 y1  y2  y3 
L  1
,

3
3


 x  x2  x3 y1  y2  y3 
M 1
,

3
3


 x  x2  x3 y1  y2  y3 
N 1
,

3
3


We see that L  M  N  G
Centroid
 x1  x2  x3 y1  y2  y3 
G
,

3
3


Incentre
Intersection of angle bisectors of a
triangle is called the incentre
A(x1, y1)
F
B(x2, y2)
E
I
D
C(x3, y3)
Let BC = a, AC = b, AB = c
Incentre is
the centre of
the incircle
AD, BE and CF are the angle
bisectors of A, B and C
respectively.
BD AB b  D   bx2  cx3 , by2  cy3 



 bc

b

c


DC AC c
Incentre
A(x1, y1)
F
B(x2, y2)
E
I
D
BD AB b



DC AC c
C(x3, y3)
 bx  cx3 by2  cy3 
D   2
,
b

c
b  c 

AI AB AC AB  AC c  b




ID BD DC BD  DC
a
bx2  cx3
by2  cy3 

ay1  b  c 
 ax1  b  c  b  c

b

c
I  
,

a  b  c 
a  b  c 




Similarly I can be derived
 ax1  bx2  cx3 
I  

using E and F also
abc


Now,
Incentre
A(x1, y1)
F
B(x2, y2)
E
I
D
BD AB b



DC AC c
C(x3, y3)
 bx  cx3 by2  cy3 
D   2
,
b

c
b  c 

AI AB AC AB  AC c  b




ID BD DC BD  DC
a
bx2  cx3
by2  cy3 

ay1  b  c 
 ax1  b  c  b  c

b

c
I  
,

a  b  c 
a  b  c 




Angle bisectors are
 ax1  bx2  cx3 
I  

concurrent at the incentre
abc


Now,
Excentre
Intersection of external angle
bisectors of a triangle is called
the excentre
E
A(x1, y1)
F
B(x2, y2)
E
D
C(x3, y3)
EA = Excentre opposite A
Excentre is
the centre of
the excircle
 ax1  bx2  cx3 ay1  by2  cy3 
EA  
,


a

b

c

a

b

c


Excentre
Intersection of external angle
bisectors of a triangle is called
the excentre
E
A(x1, y1)
F
B(x2, y2)
E
D
C(x3, y3)
EB = Excentre opposite B
 ax1  bx2  cx3 ay1  by2  cy3 
EB  
,

a

b

c
a

b

c


Excentre is
the centre of
the excircle
Excentre
Intersection of external angle
bisectors of a triangle is called
the excentre
E
A(x1, y1)
F
B(x2, y2)
E
D
C(x3, y3)
EC = Excentre opposite C
 ax1  bx2  cx3 ay1  by2  cy3 
EC  
,

a

b

c
a

b

c


Excentre is
the centre of
the excircle
Cirumcentre
Intersection of perpendicular
bisectors of the sides of a triangle
is called the circumcentre.
A
C
O
OA = OB = OC
= circumradius
B
The above relation gives two
simultaneous linear equations. Their
solution gives the coordinates of O.
Orthocentre
Intersection of altitudes of a triangle
is called the orthocentre.
A
H
B
Orthocentre
is always
denoted by H
C
We will learn to find
coordinates of Orthocentre
after we learn straight lines
and their equations
Cirumcentre, Centroid and
Orthocentre
The circumcentre O, Centroid G and
Orthocentre H of a triangle are
collinear.
H
O
G
G divides OH in the
ratio 1:2
Locus – a Definition
The curve described by a point
which moves under a given condition
or conditions is called its locus
e.g. locus of a point having a
constant distance from a fixed point
:
Circle!!
Locus – a Definition
The curve described by a point
which moves under a given condition
or conditions is called its locus
e.g. locus of a point equidistant from
two fixed points :
Perpendicular bisector!!
Equation to a Locus
The equation to the locus of a point
is that relation which is satisfied by
the coordinates of every point on the
locus of that point
Important :
A Locus is NOT an
equation. But it is
associated with an
equation
Equation to a Locus
Algorithm to find the equation to a
locus :
Step I : Assume the coordinates
of the point whose locus is to be
found to be (h,k)
Step II : Write the given conditions in mathematical
form using h, k
Step III : Eliminate the variables, if any
Step IV : Replace h by x and k by y in Step III. The
equation thus obtained is the required equation to locus
Illustrative Example
Find the equation to the locus of
the point equidistant from
A(1, 3) and B(-2, 1)
Solution :
Let the point be P(h,k)
PA = PB (given)
 PA2 = PB2
 (h-1)2+(k-3)2 = (h+2)2+(k-1)2
 6h+4k = 5
 equation of locus of (h,k) is 6x+4y = 5
Illustrative Example
A rod of length l slides with its
ends on perpendicular lines. Find
the locus of its midpoint.
Solution :
Let the point be P(h,k)
Let the  lines be the axes
Let the rod meet the axes at
B(0,b)
A(a,0) and B(0,b)
 h = a/2, k = b/2
P(h,k)
Also, a2+b2 = l2
 4h2+4k2 = l2
O
 equation of locus of (h,k) is 4x2+4y2 = l2
A(a,0)
Shift of Origin
Y
P(x,y)
X
O’(h,k)
X’ O
Y’
x
Y
y
Consider a point P(x, y)
Let the origin be shifted to
O’ with coordinates (h, k)
X
relative to old axes
Let new P  (X, Y)
 x = X + h, y = Y + k
 X = x - h, Y = y - k
O  (-h, -k) with reference to new axes
Illustrative Problem
Show that the distance between two
points is invariant under
translation of the axes
Solution :
Let the points have vertices
A(x1, y1), B(x2, y2)
Let the origin be shifted to (h, k)
new coordinates : A(x1-h, y1-k), B(x2-h, y2-k)
 Old dist. 
& New dist. 
(x1  x2 )2  (y1  y2 )2
(x1  h  x2  h)2  (y1  h  y2  h)2
= Old dist.
Rotation of Axes
Y
P(x,y)
y

Consider a point P(x, y)
Let the axes be rotated
through an angle .
X’
O
X
Let new P  (X, Y) make
x
an angle  with the new
Y’
x-axis
x
y
Y
X
 cos       , sin       , sin   , cos  
R
R
R
R

Rotation of Axes
 cos      
x
y
Y
X
, sin       , sin   , cos  
R
R
R
R
x
R
y
sin  cos   cos  sin  
R
X
Y
x
 cos   sin  
R
R
R
 cos  cos   sin  sin  
X
Y
y
sin   cos  
R
R
R
 x  X cos   Y sin 

y  X sin   Y cos 
X  x cos   y sin 
Y  y cos   x sin 
Class Exercise
Class Exercise - 1
If the segments joining the points
A(a,b) and B(c,d) subtend an angle 
at the origin, prove that
cos  
a
2
ac  bd

 b2 c2  d2

Solution
Let O be the origin.
 OA2 = a2+b2, OB2 = c2+d2, AB2 = (c-a)2+(d-b)2
Using Cosine formula in OAB, we have
AB2 = OA2+OB2-2OA.OBcos
  c  a   d  b   a2  b2  c2  d2  2
2
2
On simplifying, cos  
a
2
a
ac  bd
 b2
 c
2
 d2
2



 b2 c2  d2 cos 
Class Exercise - 2
Four points A(6,3), B(-3,5), C(4,-2)
and D(x,3x) are given such that
DBC 1 Find x.

ABC 2
Solution :
Given that ABC = 2DBC
6
 3
4
3
1
5
1  2 3
2 1
x
4
3x 1
5
1
2 1
 6 5  2  3  4  3  1 6  20  2 x 5  2  3x  4  3  1 6  20 
 2 28x  14  49
49
 28x  14  
2
x 
11
3
or x  
8
8
Class Exercise - 3
If a  b  c, prove that (a,a2), (b,b2)
and (c,c2) can never be collinear.
Solution :
Let, if possible, the three points be
collinear.
a a2 1

1
b b2 1  0
2
c c2 1
R2  R2-R1, R3  R3- R2
a
2
a
1
 b  a b2  a2 0  0
c  b c2  b2
0
a
a2
1
 b  a  c  b  1 b  a 0  0
1 c b 0
Solution Cont.
R2  R2-R3
a
a2
1
 b  a  c  b  0 a  c 0  0
1 cb 0
 b  a  c  b   c  a  0
This is possible only if a = b or b = c or c = a.
But a  b  c. Thus the points can never be collinear.
Q.E.D.
Class Exercise - 4
Three vertices of a parallelogram
taken in order are (a+b,a-b),
(2a+b,2a-b) and (a-b,a+b). Find the
fourth vertex.
Solution :
Let the fourth vertex be (x,y).
Diagonals bisect each other.

a  b  a  b 2a  b  x
a  b  a  b 2a  b  y

and

2
2
2
2
 the required vertex is (-b,b)
Class Exercise - 5
If G be the centroid of ABC and P
be any point in the plane, prove that
PA2+PB2+PC2=GA2+GB2+GC2+3GP2.
Solution :
Choose a coordinate system such that G is
the origin and P lies along the X-axis.
Let A  (x1,y1), B  (x2,y2), C  (x3,y3), P  (p,0)
 LHS = (x1-p)2+y12+(x2-p)2+y22+(x3-p)2+y32
= (x12+y12)+(x22+y22)+(x32+y32)+3p2-2p(x1+x2+x3)
=GA2+GB2+GC2+3GP2
=RHS
Q.E.D.
Class Exercise - 6
The locus of the midpoint of the portion
intercepted between the axes by the
line xcos+ysin = p, where p is a
constant, is
1
1
4
(a) x2  y2  4p2 (b) 2  2  2
x
y
p
4
1
1
2
(c) x2  y2  2 (d) 2  2  2
p
x
y
p
Solution
Let the line intercept at the
axes at A and B. Let R(h,k) be
the midpoint of AB.
p 
 p
 R h,k   
,

 2 cos  2 sin  
 sin  
p
p
, cos  
2k
2h
1
1
4
p2
p2
 2  2  1  Locus  2  2  2
x
y
p
4k
4h
 Ans : (b)
Class Exercise - 7
A point moves so that the ratio of its
distance from (-a,0) to (a,0) is 2:3.
Find the equation of its locus.
Solution :
Let the point be P(h,k). Given that
 h  a  k 2
2
 h  a  k 2
2

2
3
h  a  k 2


2
h

a

  k2
2
h2  2ah  a2  k2 4
 2

2
2
9
h  2ah  a  k
 5h2  26ah  5k2  5a2  0
 the required locus is
5x2  26ax  5y2  5a2  0

4
9
Class Exercise - 8
Find the locus of the point such that
the line segments having end points
(2,0) and (-2,0) subtend a right angle
at that point.
Solution :
Let A  (2,0), B  (-2,0)
Let the point be P(h,k). Given that
PA2  PB2  AB2
2
2
2
  h  2   k 2  h  2   k 2   2  2 
 2h2  2k2  8  16
 the required locus is
x2  y2  4
Class Exercise - 9
Find the coordinates of a point where the
origin should be shifted so that the equation
x2+y2-6x+8y-9 = 0 will not contain terms in
x and y. Find the transformed equation.
Solution :
Let the origin be shifted to (h,k). The given equation becomes
(X+h)2+(Y+k)2-6(X+h)+8(Y+k)-9 = 0
Or, X2+Y2+(2h-6)X+(2k+8)Y+(h2+k2-6h+8k-9) = 0
 2h-6 = 0; 2k+8 = 0  h = 3, k = -4.
Thus the origin is shifted to (3,-4).
Transformed equation is X2+Y2+(9+16-18-32-9) = 0
Or, X2+Y2 = 34
Class Exercise - 10
Through what angle should the axes
be rotated so that the equation
11x2+4xy+14y2 = 5 will not have
terms in xy?
Solution :
Let the axes be rotated through an
angle . Thus equation becomes
11  X cos   Y sin    4  X cos   Y sin    X sin   Y cos  
2
14  X sin   Y cos    5
2
Solution Cont.


Or, 11cos2   4 sin  cos   14 sin2  X

 11sin

 4 cos2   6 sin  cos   4 sin2  XY
2

  4 sin  cos   14 cos2   5
 2 cos2   3 sin  cos   2 sin2   0
  cos   2 sin   2 cos   sin    0
 tan   
1
or tan   2
2
Therefore, the required angle is
 tan1
1
or tan1 2
2
Thank you
Related documents