Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
5.1 Using Fundamental Identities Quick Review Evaluate the expression. 4 1. sin   5  12  2. cos     13  Factor the expression into a product of linear factors. -1 -1 3. 2a  3ab  2b 2 2 4. 9u  6u  1 2 Simplify the expression. 5. 2 3  y x Quick Review Solutions Evaluate the expression. 4 1. sin   53.13  0.927 rad 5  12  2. cos    157.38  2.747 rad  13  Factor the expression into a product of linear factors. -1 -1 3. 2a  3ab  2b 2 2 4. 9u  6u  1 2  2a  b  a  2b   3u  1 Simplify the expression. 5. 2 3  y x 2x  3y xy 2 What you’ll learn about • • • • • • • Identities Basic Trigonometric Identities Pythagorean Identities Cofunction Identities Odd-Even Identities Simplifying Trigonometric Expressions Solving Trigonometric Equations … and why Identities are important when working with trigonometric functions in calculus. Basic Trigonometric Identities Reciprocal Identites 1 csc   sin  sin   1 csc  1 sec   cos  cos   1 sec  Quotient Identites sin  tan   cos  cos  cot  tan  1 cot   tan  tan   1 cot  Pythagorean Identities cos   sin   1 2 2 1  tan   sec  2 2 cot   1  csc  2 2 Example Using Identities Find sin  and cos if tan   3 and cos  0. Example Using Identities Find sin  and cos if tan   3 and cos  0. 1  tan   sec  2 2 1  9  sec  since tan   3 2 sec   10 cos   1/ 10 since cos   0 To find sin , use tan   3 and cos  1/ 10. sin  cos  sin   cos  tan  tan     sin   1/ 10  3 sin   3/ 10 Therefore, cos   1/ 10 and sin   3/ 10 Cofunction Identities y r x cos A  r x Angle B: sin B  r y cos B  r Angle A: sin A  y x x cot A  y x tan B  y y cot B  x tan A  r x r csc A  y r sec B  y r csc B  x sec A  Cofunction Identities   sin      cos  2    cos      sin  2    tan      cot  2    cot      tan  2    sec      csc  2    csc      sec  2  Even-Odd Identities sin(- x)  -sin x cos(- x)  cos x tan(- x)  - tan x csc(- x)  - csc x sec(- x)  sec x cot(- x)  - cot x Example Simplifying by Factoring and Using Identities Simplify the expression cos x  cos x sin x. 3 2 Example Simplifying by Factoring and Using Identities Simplify the expression cos x  cos x sin x. 3 cos x  cos x sin x 3 2  cos x(cos x  sin x) 2  cos x(1)  cos x 2 Pythagorean Identity 2 Example Simplifying by Expanding and Using Identities Simplify the expression:  csc x -1 csc x  1 2 cos x Example Simplifying by Expanding and Using Identities Simplify the expression:  csc x -1 csc x  1  csc x -1 csc x  1 2 cos x 2 cos x csc x  1  cos x cot x  cos x cos x 1   sin x cos x 1  sin x  csc x 2 2 ( a  b)(a - b)  a - b 2 2 2 2 2 2 2 2 2 Pythagorean Identity cos  cot   sin  Example Solving a Trigonometric Equation 3 sin x Find all values of x in the interval [0,2 ) that solve  tan x. cos x Example Solving a Trigonometric Equation 3 sin x Find all values of x in the interval [0,2 ) that solve  tan x. cos x 3 sin x  tan x cos x sin x sin x  cos x cos x sin x  sin x 3 3 sin x  sin x  0 3 sin x(sin x  1)  0 2  sin x  cos x   0 2 sin x  0 or cos x  0 2 Reject the posibility that cos x  0 because it would make both 2 sides of the original equation undefined. sin x  0 in the interval 0  x  2 when x  0 and x   . Homework