* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download MOSFET Small Signal Model and Analysis •Just as we did
Analog television wikipedia , lookup
Nanofluidic circuitry wikipedia , lookup
Signal Corps (United States Army) wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Cellular repeater wikipedia , lookup
Current mirror wikipedia , lookup
High-frequency direction finding wikipedia , lookup
Network analysis (electrical circuits) wikipedia , lookup
MOSFET Small Signal Model and Analysis •Just as we did with the BJT, we can consider the MOSFET amplifier analysis in two parts: •Find the DC operating point •Then determine the amplifier output parameters for very small input signals. Georgia Tech ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis i1 + V1 - Non-Linear I-V relationship (BJT, MOSFET, etc…) i2 + V2 - Linearize over “small signal range” i1 + V1 - Linear Two Port Network i2 + V2 - iDS iGS vDS vGS General “y-parameter” Network MOSFET “y-parameter” Network Georgia Tech I1=y11V1 + y12V2 IGS=y11VGS + y12VDS I2=y21V1 + y22V2 IDS=y21VGS + y22VDS ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis [ =[ [ [[ [ IGS y11 y12 VGS IDS y21 y22 VDS y ij = ∂I j ∂Vi VGS ,Q , VDS ,Q IGS=y11VGS + y12VDS Derivative of current-voltage equation evaluated at the Quiescent Point IDS=y21VGS + y22VDS MOSFET Amplifiers are biased into Saturation (or Active Mode) I DS = [ ] Kn (VGS − VTN )2 (1 + λ V DS ) 2 1.) Input Conductance I GS = 0 ⇒ ∂I GS = 0 and ∂VGS 2.) Output Conductance 3.) Transconductance Georgia Tech for V DS ≥ VGS − VTN ∂I GS =0 ⇒ ∂V DS y11 = 0 and y12 = 0 ∂I DS λ Kn = y 22 = (VGS − VT )2 ∂VDS 2 ∂I DS = y 21 = K n (VGS − VT )(1 + λ VDS ) ∂VGS ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis Compare with BJT Results There is a large amount of symmetry between the MOSFET and the BJT MOSFET y 22 BJT λ Kn I DS 2 ( ) = go = VGS − VT = 1 2 + V DS λ y 21 = g m = K n (VGS − VT )(1 + λ VDS ) = Georgia Tech Each of these parameters act in the same manner I DS VGS − VTN 2 y 22 IC = V A + VCE y 21 = IC VT ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis Putting the mathematical model into a small signal equivalent circuit Compare this to the BJT small signal equivalent circuit Georgia Tech ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis Example: Jaeger 13.94 Calculate the voltage gain, Av=vo/vs Given: Kn=1 mA/V2 , λ=0.015 V-1 Bias Point of: IDS=2 mA, VDS=7.5V Georgia Tech ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis Example: Jaeger 13.94 go = λ Kn (VGS − VT )2 2 g m = K n (VGS − VT )(1 + λ VDS ) Need to find VGS-VT [ ] Kn I DS = (VGS − VTN )2 (1 + λ VDS ) 2 1 mA / V 2 2 mA = (VGS − VTN )2 (1 + 0.015 (7.5) ) 2 4 VGS − VTN = = 1.9V 1.11 ∴ g m = 2.11 mS g o = 27.1 µ S ⇒ ro = 36.9kΩ ECE 3040 - Dr. Alan Doolittle [ Georgia Tech ] MOSFET Small Signal Model and Analysis Example: Jaeger 13.94 Av = vo vGS vo = vs v s vGS vGS 1Meg = = 0.99 and 10k + 1Meg vs ∴ Av = Georgia Tech vo = − g m (ro vGS Rd R3) = −2.1mS (3.48k ) = −7.35 vo vGS vo = = −7.27 [V / V ] vs v s vGS ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis Add in capacitances Overlap of Gate Oxide Overlap of Gate Oxide LD LD Gate to channel to Bulk capacitance Reverse Bias Junction capacitances Georgia Tech ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis Complete Model of a MOSFET Overlap of Gate Oxide Overlap of Gate Oxide and Gate to channel capacitance Georgia Tech Gate to channel to Bulk capacitance g mb = g m γ 2 V SB + 2φ F Due to effective modulation of the threshold voltage. Reverse Bias Junction capacitances ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis SPICE MOSFET Model SPICE models the drain current ( IDS ) of an n-channel MOSFET using the following parameters/equations (SPICE variables are shown in ALL CAPPITAL LETTERS) Cutoff: IDS = 0 Linear: I DS = KP W 2 LEFF V DS [2(VGS − VTH ) − V DS ](1 + (LAMBDA) V DS ) KP W 2 LEFF (VGS − VTH )2 (1 + (LAMBDA) VDS ) Saturation: I DS = [ Threshold Voltage: ] ( VTH = VTO + GAMMA 2 PHI − VBS − 2 PHI ) Channel Length LEFF=L-2LD Georgia Tech ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis SPICE MOSFET Model – Additional Parameters SPICE takes many of it’s parameters from the integrated circuit layout design: W AS=WxLdiff(source) PS=2xLdiff(source)+W AD=WxLdiff(drain) L Ldiff(source) Source PD=2xLdiff(drain)+W Ldiff(drain) Gate L = polysilicon gate length W = polysilicon gate width AD = drain area AS = source area Drain PD = perimeter of drain diffusion (not including edge under gate) PS = perimeter of source diffusion (not including edge under gate) NRD = number of “squares” in drain diffusion NRS = number of “squares” in source diffusion Georgia Tech Specified in terms of the minimum feature size ECE 3040 - Dr. Alan Doolittle MOSFET Small Signal Model and Analysis SPICE MOSFET Model – Additional Parameters Most Used Georgia Tech ECE 3040 - Dr. Alan Doolittle MOSFET Amplifiers What is the Maximum Gain Possible? Is it saturated (Constant current)?, VDS > VGS − VTP but VDS = VGS and VTP ≥ 0 for a depletion mode MOSFET so, 0 > −VTP is always satisfied. ⇒ Is Saturated! AC Signal Gate Bias Av , Max = − g m vo Av , Max = − Av , Max = − Georgia Tech K n (VGS − VT )(1 + λ VDS ) λ K n (VGS − VT ) (1 + λ VDS ) λ (VGS − VT ) 2 go is internal to the transistor and can not be avoided. Any additional resistor due to external circuitry will lower the gain. For this reason current sources are often used as the “load” instead of bias resistors in amplifier circuits. ECE 3040 - Dr. Alan Doolittle