Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Roots & Radicals Intermediate Algebra 1 Roots and Radicals Radicals Rational Exponents Operations with Radicals Quotients, Powers, etc. Solving Equations Complex Numbers 2 Radicals 7.1 3 Square Roots Finding Square Roots 32 = 9 (-3)2 = 9 (½)2= (¼) N.B. -32 = -9 The square root of 9 is 3 The square root of 9 is also –3 The square root of (¼) is (½) 4 Square Roots The square root symbol Radical sign The expression within is the radicand Square Root If a is a positive number, then is the positive square root of a a a is the negative square root of a Also, 0 0 5 Approximating Square Roots Approximating Square Roots Perfect squares are numbers whose square roots are integers, for example 81 = 92. Square roots of other numbers are irrational numbers, for example 2, 3 We can approximate square roots with a calculator. 6 Approximating Square Roots 10 3.162 (Calculator) We can determine that it is greater than 3 and less then 4 because 32 = 9 and 42 =16. 7 Cube Roots 2 is the cube root of 8 because 23 = 8. 3 8 2 2 3 3 8 and 23 above are radicands 3 is called the index (index 2 is omitted) 3 27 ? 3 27 ? 8 3 27 ? . 8 Cube Roots Evaluated 2 is the cube root of 8 because 23 = 8. 3 8 2 2 3 3 8 and 23 above are radicands 3 is called the index (index 2 is omitted) 3 27 3 3 27 3 8 2 3 27 3 9 nth Roots n The number b is an nth root of a, a , if bn = a. 10 nth Roots nth Roots An nth root of number a is a number whose nth power is a. n a a number whose nth power is a If the index n is even, then the radicand a must be nonnegative. 4 16 2, but 4 16 is not a real number 5 32 2 11 age 397 Radicals 12 7-8 age 393 Square Root of x2 x x 2 13 7-7 age 398 Product Rule for Radicals 14 7-9 Simplifying Radical Expressions Product Rule – n a n b n a b 36 4 6 2 12 36 4 10 y 144 12 3k 30ky 4 2 5 2 XXXXXX 5 9 xy2 5 8 xy2 5 72 x 2 y 4 15 age 399 Quotient Rule for Radicals 16 7-10 age 399 Quotient Rule for Radicals 64 64 8 49 49 7 27 x 9 64 y 6 3 17 7-10 Quotient Rule for Radicals 64 64 8 49 49 7 27 x 9 64 y 6 3 age 399 27 x 3 3 64 y 9 6 27 x 3 3 3 64 3 y 9 6 3 4 3 3 x y 2 3 3 3 3x 2 4 y3 18 7-10 Radical Functions Finding the domain of a square root function. f ( x) 2 x 12 19 Radical Functions Finding the domain of a square root function. f ( x) 2 x 12 Domain is all x ' s for which 2 x 12 0. That is, x | x 6. 20 Warm-Ups 7.1 21 7.1 T or F 1. 2. 3. 4. 5. T F T F T 6. F 7. F 8. F 9. T 10. T 22 Wind Chill 23 Wind Chill 24 Wind Chill 10.5 6.7 W 91.4 20 0.45 20 457 5 25 110 25 Wind Chill 10.5 6.7 W 91.4 20 0.45 20 457 5 25 110 3.56 26 Rational Exponents 7.2 27 Exponent 1/n When n Is Even Page 388 28 7 When n Is Even 1 2 100 100 10 1 4 625 625 5 4 1 6 64 64 2 4 6 1 2 4 is not yet defined 29 Exponent 1/n When n Is Odd Page 389 30 7 Exponent 1/n When n Is Odd 1 3 27 27 3 3 27 1 3 27 3 3 1 5 1 1 1 5 32 2 32 31 age 389 nth Root of Zero 0 0 n n 0 0 32 age 390 Rational Exponents 33 7-4 Evaluating in Either Order 8 8 2 2 3 2 3 8 64 4 2 3 2 4 or 8 3 2 3 34 age 391 Negative Rational Exponents 35 7-5 Evaluating a - m/n 8 2 3 1 8 2 3 1 8 3 2 1 1 2 2 4 36 Rules for Rational Exponents 37 Page 392 7 Simplifying y 1 6 6 6 y y 6 a b ab 1 2 1 3 38 Simplifying 1 1 a b ab a b a b 1 2 1 3 1 2 a 1 3 1 1 1 1 3 2 b 3 2 a b 2 3 39 Simplifying 9 x y 8 1 10 12 2 z 40 Simplifying 9 x y 8 1 10 12 2 z 1 2 4 6 3x z 9 x y z 5 y 4 5 6 41 Simplified Form for Radicals of Index n A radical expression of index n is in Simplified Radical Form if it has 1. No perfect nth powers as factors of the radicand, 2. No fractions inside the radical, and 3. No radicals in the denominator. 42 Warm-Ups 7.2 43 7.2 T or F 1. 2. 3. 4. 5. T F F T T 6. T 7. T 8. F 9. T 10. T 44 California Growing 1 n S r 1 P 45 Growth Rate 1 n S r 1 P 1 30 32.5 r 1 0.0165 1.65% 19.9 46 Operations with Radicals 7.3 47 Addition and Subtraction Like Radicals 3 2 2 2 2 4 2 3 2 2 2 2 4 2 5 5 5 5 48 Addition and Subtraction Like Radicals 3 22 2 2 4 2 3 22 2 2 4 2 5 5 5 5 but 3 22 3 5 3 22 3 5 49 Simplifying Before Combining 8 18 50 Simplifying Before Combining 8 18 4 2 9 2 2 2 3 2 5 2 51 Simplifying Before Combining 1 20 5 52 Simplifying Before Combining 1 1 20 4 5 5 5 53 Simplifying Before Combining 1 1 20 4 5 5 5 1 5 2 5 5 5 54 Simplifying Before Combining 1 1 20 4 5 5 5 1 5 2 5 5 5 5 2 5 5 5 10 5 11 5 5 5 5 55 Simplifying Before Combining 1 11 5 20 5 5 3 16 x y 54 x y 4 3 3 4 3 56 Simplifying Before Combining 3 16 x y 54 x y 4 3 4 3 3 8 2 x x y 3 3 3 3 3 3 3 27 2 x x y 3 3 3 3 3 3 3 57 Simplifying Before Combining 3 16 x y 54 x y 4 3 4 3 3 8 2 x x y 3 3 3 3 3 3 3 27 2 x x y 3 3 3 3 3 3 3 2 2 x x y 3 2 x x y 3 3 3 3 58 Simplifying Before Combining 3 16 x y 54 x y 4 3 4 3 3 8 2 x x y 3 3 3 3 3 3 3 27 2 x x y 3 3 3 3 3 3 3 2 2 x x y 3 2 x x y 3 3 3 3 2 xy 2 x 3xy 2 x 3 xy 2 x 3 3 59 Multiplying Radicals Same index 2 5 10 3 2 4 5 12 10 7 x y x y x y 2 3 7 3 7 5 4 60 Multiplying Radicals Same index 2 5 10 3 2 4 5 12 10 7 x y x y x y 2 3 4 3 3 7 7 5 4 2 x 4 x 2 4 61 Multiplying Radicals Same index 3 4 2 5 x 4 x x 4 2 4 8 62 Multiplying Radicals Same index 3 4 2 5 x 4 x x 4 2 4 8 4 x x 4 8 4 4 63 Multiplying Radicals Same index 3 4 2 5 x 4 x x 4 2 4 8 4 x x 4 8 4 4 x x 4 8 4 64 Multiplying Radicals 3 Same index 4 5 2 x x 4 x 4 8 4 2 4 x x 4 8 4 4 x x 2 4 4 2 8 4 4 65 Multiplying Radicals Same index 3 4 2 5 x 4 x x 4 2 4 8 x x 2 4 4 8 2 4 4 x 2x 4 16 4 66 Multiplying Radicals Same index 3 4 2 5 x 4 x x 4 2 4 8 x4 x 4 2 4 4 8 2 x 2x 4 16 4 x 2x 2 4 67 Multiplying Radicals - Binomials 3 2 2 4 5 3 2 12 10 6 12 10 68 Multiplying Binomials 3 2 3 3 2 3 2 4 5 3 2 12 10 6 12 10 2 4 3 5 3 3 4 12 10 3 69 Multiplying Binomials 3 2 3 3 2 2 4 5 3 2 12 10 6 12 10 3 2 4 5 3 4 12 10 24 5 3 3 3 2 4 5 70 Multiplying Binomials 3 2 3 3 2 2 4 5 3 2 12 10 6 12 10 3 24 5 3 2 4 5 3 4 12 10 3 3 2 4 5 2 16 5 78 x 3 2 3 71 Multiplying Binomials 3 2 3 3 2 2 4 5 3 2 12 10 6 12 10 3 24 5 3 2 4 5 3 4 12 10 3 3 3 2 4 5 2 16 5 78 conjugates x 3 9 6 x 3 x 3 6 x 6 x 3 2 72 Multiplying Radicals – Different Indices 1 4 1 2 4 2 2 2 2 2 3 2 3 1 1 4 2 3 4 2 2 8 4 3 4 73 Multiplying Radicals Different Indices 4 3 1 4 1 2 1 3 1 2 2 2 2 2 2 1 1 4 2 3 4 2 2 8 4 3 4 2 3 2 3 74 Different Indices 4 3 1 4 1 2 1 1 4 2 1 3 1 2 2 6 2 2 2 2 2 3 4 2 2 8 4 3 4 3 6 2 3 2 3 2 3 75 Different Indices 4 3 1 4 1 2 1 1 4 2 1 3 1 2 2 6 2 2 2 2 2 3 4 2 2 8 3 6 3 4 4 2 3 2 3 2 3 2 3 6 2 6 3 76 Different Indices 4 3 1 4 1 2 1 1 4 2 1 3 1 2 2 6 2 2 2 2 2 3 4 2 2 8 3 6 3 4 4 2 3 2 3 2 3 2 3 6 2 6 3 6 4 6 27 108 6 77 Conjugates x y x y x 2 3 2 y 2 2 3 2 3 1 3 2 7 3 2 7 78 Conjugates x y x y x 2 3 2 y 2 2 3 2 3 1 3 2 7 3 2 7 9 4 7 19 79 Warm-Ups 7.3 80 7.3 T or F 1. 2. 3. 4. 5. F T F F T 6. F 7. T 8. F 9. F 10. T 81 Area of a Triangle 82 Area of a Triangle 1 A bh 2 83 Area of a Triangle 1 A bh 2 1 2 A 30 6 3 5 m 2 84 Quotients, Powers, etc 7.4 85 Dividing Radicals 10 10 10 5 2 5 5 86 Dividing Radicals 10 10 10 5 2 5 5 or 10 5 10 5 5 5 50 5 2 5 2 2 5 87 Dividing Radicals 6 20 6 2 5 2 2 2 3 5 2 3 5 88 Rationalizing the Denominator 2 3 2 6 89 Rationalizing the Denominator 2 3 2 6 2 6 2 6 90 Rationalizing the Denominator 2 3 2 6 2 6 2 6 2 2 2 6 6 18 26 91 Rationalizing the Denominator 2 3 2 6 2 6 2 2 2 6 6 18 26 2 6 2 2 3 6 3 2 4 5 2 3 6 4 92 Powers of Radical Expressions 3 3 4 2 y 3 3 4y 4 3 4 81 9 729 3 93 Powers of Radical Expressions 3 3 4 2 y 3 3 4 3 3 4 4y 2 y 3 81 9 729 3 3 3 4 y 8 y 4 y 32 y 3 94 4 Warm-Ups 7.4 95 7.4 T or F 1. 2. 3. 4. 5. T T F T F 6. T 7. F 8. T 9. T 10. T 96 7.4 #102 3 6 1 3 LCD 6 1 6 1 6 1 3 6 1 6 1 6 1 3 6 1 3 6 1 3 5 6 1 6 1 5 3 6 3 3 6 3 5 5 6 1 3 6 3 5 3 6 3 2 3 5 97 Adding Fractions 110. x 5 x 3 x 98 Adding Fractions 110. x 5 x 3 x LCD x x 3 99 Solving Equations 7.5 100 Solving Equations The Odd Root Property If n is an odd positive integer, x k n x k n for any real number k. 101 Solving Equations – Odd Powers The Odd Root Property If n is an odd positive integer, x k n x k n for any real number k. x 8 3 x 82 3 102 Solving Equations – Odd Powers The Odd Root Property If n is an odd positive integer, x k n xn k for any real number k. x 27 3 x 27 3 3 103 Solving Equations – Odd Powers The Odd Root Property If n is an odd positive integer, x k n xn k for any real number k. x 1 3 54 x 1 54 27 2 3 3 3 x 1 3 2 3 104 age 419 Even-Root Property 105 7-11 Even-Root Property x 4 x 2 2 x 0 x0 2 x 4 has no real solution age 419 2 106 7-11 Solving Equations – Even Powers The Even Root Property If n is an even positive integer, k 0 xn k x n k k 0 xn k x0 k 0 xn k has no real solution. x2 4 x 4 2 2, 2 107 Solving Equations – Even Powers The Even Root Property If n is an even positive integer, k 0 xn k x n k k 0 xn k x0 k 0 xn k has no real solution. x 4 1 80 x 4 81 4 x 4 4 81 x 3 3,3 CHECK 108 Solving Equations – Even Powers The Even Root Property If n is an even positive integer, k 0 xn k x n k k 0 xn k x0 k 0 xn k has no real solution. x 3 2 4 x 3 2 4 x 3 2 x 3 2 109 Solving Equations – Even Powers The Even Root Property If n is an even positive integer, k 0 x k x k k 0 xn k x0 k 0 xn k has no real solution. n x 3 2 n 4 x 3 2 x 3 2 5 x 3 2 1 1,5 CHECK 110 Isolating the Radical 2x 3 5 0 2x 3 5 2 2x 3 5 Isolate the radical 2 Square both sides 2 x 3 25 111 Squaring Both Sides 2x 3 5 0 2x 3 5 2x 3 2 Isolate the radical 5 2 Square both sides 2 x 3 25 2 x 28 x 14 14 CHECK 112 Cubing Both Sides 3 a 3 2a 7 3 3 a3 3 3 2a 7 3 a 3 2a 7 a 10 10 CHECK 113 Squaring Both Sides Twice 2x 1 x 1 2x 1 x 1 2 2x 1 x 1 2 114 Squaring Both Sides Twice 2x 1 x 1 2x 1 x 1 2 2x 1 x 1 2 2x 1 x 2 x 1 x2 x 2 x 2 x 4x 2 115 Squaring Both Sides Twice 2x 1 x 1 x 4x 2x 1 x 1 x 4x 0 2 2x 1 2 2 x 1 2x 1 x 2 x 1 x2 x 2 x 2 x 4x 2 2 x x 4 0 x0 x4 0, 4 CHECK 116 Rational Exponents Eliminate the root, then the power 2 3 a 2 117 Eliminate the Root, Then the Power 2 3 a 2 3 3 a 2 2 a 8 2 3 a 8 2 a 2 2 CHECK 2 2, 2 2 118 Negative Exponents r 1 2 3 1 119 Negative Exponents Eliminate the root, then the power r 1 2 3 1 3 3 r 1 1 2 3 r 1 2 1 r 1 2 1 r 1 1 r2 CHECK r 0 0, 2 120 Negative Exponents Eliminate the root, then the power 2t 3 2 3 1 121 No Solution Eliminate the root, then the power 2t 3 2 3 1 3 2t 3 13 2 3 2t 3 1 2 2t 3 2 1 122 No Solution Eliminate the root, then the power 2t 3 2 3 1 3 3 2t 3 1 2 3 2t 3 2 1 2t 3 2 1 No real solution 123 Strategy for Solving Equations with Exponents and Radicals Page 424 124 7-1 Distance Formula Pythagorean Theorem age 424 a2 + b2 = c2 125 7-13 Distance Formula Find the distance between the points (-2,3) and (1, -4). age 424 d 1 2 4 3 2 2 126 7-13 Distance Formula Find the distance between the points (-2,3) and (1,-4). age 424 d d 1 2 4 3 2 2 3 7 2 d 9 49 58 2 127 7-13 Diagonal of a Sign What is the length of the diagonal of a rectangular billboard whose sides are 5 meters and 12 meters? Let x diagonal length a b c 2 2 2 128 Diagonal of a Sign What is the length of the diagonal of a rectangular billboard whose sides are 5 meters and 12 meters? Let x diagonal length a b c 2 2 2 5 12 x 2 2 2 25 144 x 2 x 169 2 129 Diagonal of a Sign What is the length of the diagonal of a rectangular billboard whose sides are 5 meters and 12 meters? Let x diagonal length a 2 b2 c2 52 122 x 2 25 144 x 2 x 2 169 x 169 2 x 13 or 13 The diagonal is 13 meters. CHECK 130 Warm-Ups 7.5 131 7.5 T or F 1. 2. 3. 4. 5. F T F F T 6. F 7. F 8. T 9. T 10. T 132 Complex Numbers 7.6 133 Imaginary Numbers Define i 1 , i 1 , 2 b i b 134 Imaginary Numbers Define i 1 , i 1 , b i b 2 100 i 100 10i 81 ? 135 Imaginary Numbers Define i 1 , i 1 , b i b 2 100 i 100 10i 81 i 81 9i 136 Imaginary Numbers Define b i b i 1 , i 1 , 2 Beware 4 9 i 4 i 9 i 2 i 3 6i 6 1 6 2 4 9 4 9 36 6 137 Imaginary Numbers Define i 1 , i 1 , 2 b i b 2 8 ? 138 Imaginary Numbers Define i 1 , i 1 , 2 b i b 2 8 i 2 i 8 i 2 4i 16 2 4 1 4 139 Powers of i i i 1 1 i 1 2 i i i 1i i 3 2 i i i 1 1 1 4 2 2 i i i 1i i 5 etc. 4 1 140 age 429 Complex Numbers 141 7-14 age 430 (Figure 7.3) Figure 7.3 142 7-15 Addition and Subtraction The sum and difference a + bi of c + di and are: (a + bi) + (c + di) = (a + c) + (b + d)i (a + bi) - (c + di) = (a - c) + (b - d)i 143 (2 + 3i) + (4 + 5i) The sum and difference a + bi of c + di and are: (2 + 3i) + (4 + 5i) = (2 + 4) + (3 + 5)i = 6 + 8i (2 + 3i) – (4 + 5i) = (2 – 4) + (3 – 5)i = – 2 – 2i 144 Multiplication The complex numbers a + bi of c + di and are multiplied as follows: (a + bi) (c + di) = ac + adi + bci + bdi2 = ac + bd(– 1) + adi + bci = (ac – bd) + (ad + bc)i 145 (2 + 3i) (4 + 5i) The complex numbers a + bi of c + di and are multiplied as follows: (a + bi) (c + di) = (ac – bd) + (ad + bc)i (2 + 3i) (4 + 5i) = 8 + 10i + 12i + 15i2 = 8 + 22i + 15(– 1) = – 7 + 22i 146 Division (2 + 3i) ÷ 4 = (2 + 3i) / 4 =½+¾i 147 Complex Conjugates The complex numbers a + bi and a – bi are called complex conjugates. Their product is a2 + b2. 148 Division We divide the complex number a + bi by the complex number c + di as follows: a bi a bi c di c di c di c di 149 Division We divide the complex number a + bi by the complex number c + di as follows: 2 3i 4 5i 150 Division We divide the complex number 2 + 3i by the complex number 4 + 5i. 2 3i 2 3i 4 5i 4 5i 4 5i 4 5i 8 10i 12i 15i 2 16 25i 23 2i 23 2i 23 2 i 16 25 41 41 41 2 151 Square Root of a Negative Number For any positive real number b, b i b. 152 Imaginary Solutions to Equations x 25 2 3x 4 0 2 153 Complex Numbers 1. 2. 3. 4. 5. 6. 7. 8. Definition of i: i = , i2 = -1. Complex number form: a + bi. a + 0i is the real number a. b is a positive real number b i b . The numbers a + bi and a - bi are complex conjugates. Their product is a2 + b2. Add, subtract, and multiply complex numbers as if they were algebraic expressions with i being the variable, and replace i2 by -1. Divide complex numbers by multiplying the numerator and denominator by the conjugate of the denominator. In the complex number system x2 = k for any real number k is equivalent to x k . 154 Complex Numbers 155 Warm-Ups 7.6 156 7.6 T or F 1. 2. 3. 4. 5. T F F T T 6. T 7. T 8. F 9. T 10. F 157 158 159