Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Observations of + H3 The Initiator of Interstellar Chemistry Benjamin McCall Oka Ion Factory University of Chicago Thomas Geballe Gemini Observatory (HI) Kenneth Hinkle National Optical Astronomy Observatories Kitt Peak National Observatory (AZ) Takeshi Oka Oka Ion Factory University of Chicago Astronomer’s Periodic Table He C Si Mg Fe N O Ne S Ar Molecules in Space H2 H3+ NH3 CH4 C2H4 C6 H CH3C3N CO H2O C 2 H2 SiH4 CH3CN CH2CHCN HCOOCH3 CH CO2 H2CO c-C3H2 C5 H CH3C2H C7 H CH+ HCO H3O+ l-C3H2 C5 O HC5N H2C6 OH HCO+ c-C3H C5 CH3NC HCOCH3 CH3C4H C2 HOC+ l-C3H C4 H CH3OH NH2CH3 CH3CH2CN CN HCN C3 N C4Si CH3SH c-C2H4O (CH3)2O CO+ C3 C3 O CH2CN HC3NH+ CH3CH2OH NO C2 O C3 S HC3N HC2CHO HC7N AlF C2 S HCCN HC2NC HCONH2 C8 H AlCl CH2 HCNH+ HCOOH l-H2C4 (CH3)2CO CP HCS+ HNCO H2CHN C5 N HC9N CS H2S HNCS H2C2O CSi HNC HOCO+ H2NCN HCl HNO H2CN HNC3 KCl MgCN H2CS H2COH+ NH MgNC SiC3 NS N2H+ NaCl N2O PN NaCN SO OCS SO+ SO2 SiN c-SiC2 SiO C2 H SiS NH2 HC11N 116 molecules...and counting! HF http://www.cv.nrao.edu/~awooten/allmols.html [updated 05/06/99] Ion-Neutral Reactions H3+ is abundantly produced in the interstellar medium through the cosmic-ray ionization of H2 2 H 2 H e cosmic ray H2 H H H 2 3 H3+ initiates a network of ion-neutral reactions, which is responsible for most observed molecules H 3 X HX H 2 HX Y XY H H 3 O OH H 2 OH H 2 H 2O H H 2O H 2 H 3O H H 3O e- H 2O H Tree of Interstellar Chemistry What is + H3 ? Equilateral triangle structure No allowed rotational spectrum No electronic spectrum Infrared spectrum obtained in 1980 T. Oka, PRL 45,531 (1980) n2x n1 Infrared inactive stretching mode n2y Infrared active degenerate bending mode Searching for H3 United Kingdom Infrared Telescope (UKIRT) Mauna Kea, Hawaii Nicholas U. Mayall Telescope Kitt Peak, AZ + Cooled Grating Spectrometer 4 (CGS4) R ~ 20,000 Phoenix Spectrometer R ~60,000 + H3 in Molecular Clouds Geballe & Oka Nature, 384, 334 (1996) N(H3+) ~ 1014 cm-2 1.02 MonR2 IRS 3 1.02 1.00 AFGL 2136 1.00 0.98 AFGL 961E 0.98 0.96 AFGL 2591 0.96 0.94 AFGL 490 0.94 0.92 36640 36660 36680 36700 37150 37170 0.90 36660 36680 36700 36720 McCall, Geballe, Hinkle, & Oka Astrophysical Journal, 522, 338 (1999) + H3 Chemistry Formation: Rate: H 2 H 2 e cosmic ray H 2 H 2 H 3 H n(H2) Destruction: 3 H CO HCO H 2 kCO n(H3+) n(CO) Steady State: ζ n(H 2 ) n(H ) constant k CO n(CO) (~ 10 cm ) 3 -4 -3 + H3 as a Probe Path Length: N(H 3 ) L n(H 3 ) ~ 1 parsec Mean Density: N(H 2 ) n(H 2 ) L ~ 104–105 cm-3 Kinetic Temperature: I 3 2 ortho-H3+ 3 3 N ortho(H ) g ortho e N para (H ) g para I 1 2 para-H3+ E kT ~ 25–50 K Agreement with canonical dense cloud values confirms ion-neutral reaction scheme. McCall, Geballe, Hinkle, & Oka Astrophysical Journal, 522, 338 (1999) Galactic Center Npara Northo Nbroad Geballe, McCall, Hinkle, & Oka Astrophysical Journal, 510, 251 (1999) = 5.1(1.7) × 1014 cm-2 = 2.4(1.1) × 1014 cm-2 = 17.5(3.9) × 1014 cm-2 Galactic Rotation About Cyg OB2 #12 Bill Morgan, 1954 distance ~ 1.7 kpc L ~ 106 L visual extinction ~ 10 mag Morgan, Johnson, & Roman PASP 66, 85 (1954) N(H) ~ 2 × 1022 cm-2 no 3.08 µm ice feature no dense clouds strong 3.4 µm C-H band diffuse clouds C2 consistent with n ~ few hundred cm-3 Less than 5% of C atoms in CO long path of diffuse material Diffuse Cloud H3 observed at UKIRT + observed at Kitt Peak Npara = 2.4(3) × 1014 cm-2 Northo = 1.4(2) × 1014 cm-2 Similar column density to dense clouds!! McCall, Geballe, Hinkle, & Oka Science 279, 1910 (1998) CO Observations N(CO) ~ few ×1016 cm-2 N(CO) 5% N( C) CO scarce diffuse velocity consistent with H3+, C2 + Diffuse H3 Chemistry Formation: Rate: H 2 H 2 e cosmic ray H 2 H 2 H 3 H n(H2) Destruction: H 3 e H H H (75%) H H2 (25%) ke n(H3+) n(e-) Steady State: ζ n(H 2 ) n(H ) constant (~ 10 cm ) k e n(e ) 3 -6 -3 + H3 vs. Density 6 10 H2 5 10 4 10 3 10 2 10 CO 1 10 H 0 10 n(X) -1 10 -2 10 -3 10 + H3 -4 10 + C -5 10 -6 10 -7 10 -8 10 Diffuse Clouds Dense Clouds -9 10 6 10 5 10 4 10 3 2 10 10 n(H) 1 10 0 10 -1 10 Long Path, Low Density Model: n(H3+) = 4 ×10-7 cm-3 Observation: N(H3+) = 4 ×1014 cm-2 L ~ 1021 cm ~ 300 pc! Seems unreasonably long... For N(H2) ~ 2 × 1022 cm-2 (inferred from visual extinction), N(H 2 ) 2 1022 -3 n(H 2 ) ~ ~ ~ 20 cm L 10 21 Seems unreasonably low... also inconsistent with C2 and CO observations! Dalgarno’s Model “clump” L = 6.7 pc n(H2) = 100 cm-3 H3+, OH “cloudlet” L ~ 0.01 pc n = 104 C2 Cecchi-Pestellini & Dalgarno, MNRAS, submitted “core” L ~ 1 AU n = 106 CO, HCO+ Several “clumps” with hierarchical structure are invoked to produce H3+. In this model, the vast majority of the H3+ is not associated with CO or C2! HCO+ recently observed with consistent Scappini, Cecchi-Pestellini, Codella, & abundance. Dalgarno, A&A, submitted Problems Remain Pressure balance between components difficult Cyg OB2 #5 (2.5 pc away) shows similar H3+ and C2 All parameters at extremes to maximize H3+ A more general solution would be desirable. Atmosphere CH4 Cyg OB2 #12 Cyg OB2 #5 CH4 N = 2.3(3) × 1014 cm-2 N = 2.0(5) × 1014 cm-2 Impact of H3 + Dense Clouds: Path length H2 number density Kinetic temperature Confirmation of ion-neutral scheme Diffuse Clouds: Apparently long path lengths? Rich chemistry even in rarefied environment? Insight into Diffuse Interstellar Bands? Probing a new ISM component?