Download Lecture 4B: Trigonometric Functions II (WORD)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Other Trigonometry Functions
Tangent:
tan x 
sin x
cos x
2 n  1
Undefined if cos x  0 , or x  

2


Cotangent:
cot x 
cos x
sin x
Undefined if sin x  0 , or x  n 
Secant:
sec x 
1
cos x
 2 n  1
Like Tangent, undefined for x  

2


Cosecant:
csc x 
1
sin x
Like Cotangent, undefined for x  n 
In all the above expressions, n  0,  1,  2, 
In terms of the sides of a right triangle,
tan x 
OPP
ADJ
MATH 1310
Ronald Brent © 2016 All rights reserved.
cot x 
ADJ
OPP
sec x 
Lecture 4B
HYP
ADJ
csc x 
HYP
OPP
1 of 12
Graphs of Other Trigonometry Functions
y
y = tan x
5
4
3
2
1
0

5
3
5
3


 
   


2
2
2
2
2
2

x
-1
-2
-3
-4
-5
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
2 of 12
y
y = sec x
5
4
3
2
1
 0
5
3
5
3


 
   


2
2
2
2
2
2

x
-1
-2
-3
-4
-5
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
3 of 12
y
y = cot x
5
4
3
2
1
0

x
-1
-2
-3
-4
-5
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
4 of 12
y = csc x
y
5
4
3
2
1
0

x
-1
-2
-3
-4
-5
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
5 of 12
Solving Right Triangles:
Example: Solve:
32
o
8

We know that the side adjacent to the 32 angle is ADJ = 8.
To get OPP, the side opposite the angle, consider that in this case
OPP
 tan 32 ,
ADJ
and so
OPP  ADJ tan32  (8)  (.624869352)  4.998954815 .
Given the opposite side, OPP, you can get the hypotenuse, HYP, from the Pythagorean theorem, or
by using
HYP
 sec32 ,
ADJ
to obtain
HYP = ADJ  sec 32  (8)  (1.179178403)  9.433427227 .

Of course, the last angle is 58 .
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
6 of 12
Non-Right Angle Triangles
Given the triangle show below with sides of length a, b, and c, and opposite angles A, B, and C,
we have:
a
b
C
B
A
Law of Sines
c
sin A sin B sin C


a
b
c
Law of Cosines
c 2  a 2  b2  2 a b cos C
also
b2  a 2  c 2  2 a c cos B
and
a 2  b2  c 2  2 b c cos A
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
7 of 12
Example: Solve:
60
o
25o
15
Using the Law of Sines
c
A
B = 60
o
b
a = 15
C = 25
o

Notice that A = 95 , so
sin 95 sin 60 sin 25


.
15
b
c
You can solve for b and c as
15 sin 60
b
sin 95
15 sin 25
and c 
.
sin 95
Using a calculator, you can get decimal equivalents:
b  13.04 and c  6.36
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
8 of 12
Example:
Solve
4
75
o
5
First, label the triangle:
A
b
c = 4
B = 75 o
C
a = 5
b2  a 2  c 2  2ac cosB  25  16  40 cos 75
 38.32
 b  6.19 .
Now you can find the angle C from the Law of Sines:
sin B sin C
sin 75 sin C


, so
and
6.19
4
b
c

sin 75
sin C  4 
 0.624
6.19
C = angle, between 0 and 90, whose sine is .624.


Using a calculator we find out that C  38.6 A  66.4 .
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
9 of 12
Trigonometric Identities
y
(cos  , sin  )


x
(1,0)
(cos  , sin  )
sin( )   sin
cos( )  cos


sin   cos   
2

MATH 1310
Ronald Brent © 2016 All rights reserved.
tan( )   tan


cos  sin   
2

Lecture 4B
10 of 12
Given
sin 2   cos 2   1 ,
2
if we divide both sides of this equation by cos  we get
sin 2   cos 2 
1

cos 2 
cos 2 
sin 2  cos 2 
1


cos 2  cos 2  cos 2  ,
tan 2   1  sec 2  .
2
Similarly if we divide by sin  , we can derive
1  cot 2   csc 2  .
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
11 of 12
Sum and Difference Formulas:
sin( A  B )  sin A cos B  sin B cos A
sin( A  B )  sin A cos B  sin B cos A
cos( A  B )  cos A cos B  sin A sin B
cos( A  B )  cos A cos B  sin A sin B
Double Angle Formulas
sin 2  2 sin  cos
cos 2  cos2   sin 2 
Half Angle Formulas
1  cos 
2
cos 2 12  
1  cos ( 2 )
2
cos 2  
sin 2 12  
sin 2  
MATH 1310
Ronald Brent © 2016 All rights reserved.
Lecture 4B
1  cos
2
1  cos ( 2 )
2
12 of 12
Related documents