Download Chap 7. Detection of Intermediates in Enzymatic Reactions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chap 15. Protein Engineering
1. Dissection of the structure and activity of existing proteins
2. Production of novel proteins: enzymes and antibodies
Protein Engineering for Altering Enzyme
Reaction Specificity
1.
2.
3.
4.
Directed evolution
Sequence comparison
Structure comparison
Altering mechanism (Modification of the catalytic machinery
for a non-related catalytic activity)
5. Introduction of the whole catalytic machinery
6. Non-catalytic protein template (Introduction of catalytic
activity into non-catalytic protein)
Berglund, P.; Park, S. Current Organic Chemistry, 2005, 9, 325-336
Evolution of New Enzyme Activity in Nature
Divergent evolution
(a) Gerlt, J.A.; Babbitt, P.C. Curr. Opin. Chem. Biol.,
1998, 2, 607-612. (b) Babbitt, P.C.; Gerlt, J.A. J. Biol.
Chem., 1997, 272, 30591-30594.
Convergent evolution
Todd, A.E.; Orengo, C.A.; Thornton, J.M. Trends
Biochem. Sci., 2002, 27, 419-426.
1. Oxydosqualene cyclization produces different
steroids according to the site of deprotonation
by different enzymes
H
One mutant of cycloartenol synthase can produce lanosterol
H
cycloartenol
HO
- H at C-19
H
H
H
19 11 H
- H at C-8
8
HO
O
oxydosqualene
lanosterol
HO
H
lanosteryl cation
H
- H at C-11
cycloartenol synthase (EC 5.4.99.8)
lanosterol synthase (EC 5.4.99.7)
H
H
parkeol
HO
H
Selection: Lanostrerol is an intermediate of ergosterol that is an essential
fungal membrane component
Hart, E. A.; Hua, L.; Darr, L. B.; Wilson, W. K.; Pang, J.; Matsuda, S. P. T.
J. Am. Chem. Soc., 1999, 121, 9887-9888.
2. Substitutions of several residues interchange
the catalytic activity between a desaturase
and a hydroxylase
hydroxylase
OH
12
linoleic acid
O
OH
oleic acid
O
desaturase
HO
OH
oleate hydroxylase (EC 1.14.13.26)
ricinoleic acid
O
oleate desaturase (EC 1.3.1.35)
Six amino acid substitutions converted oleate hydroxylase to a desaturase.
Four amino acid substitutions converted oleate desaturase to a hydroxylase.
Broun, P.; Shanklin, J.; Whittle, E.; Somerville, C. Science, 1998, 282, 1315-1317.
2. A rationally designed mutant of glutathione
transferase A1-1 shows Michael addition activity
glutathione transferase (GST, EC 2.5.1.18)
4 aa substitutions in A1-1 + Cterminus from A4-4 into A1-1
gave 300-fold increase in
Michael activity and 10-fold
decrease in subst activity.
Nilsson, L.; Gustafsson, A.; Mannervik, B. Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 9408-9412.
3. The muconate lactonizing enzyme subgroup
catalyze three different reactions through
deprotonation of an α-proton
muconate lactonizing enzymes (EC 5.5.1.1)
CO2
O
O
O
O
O H
N
H
O
O
O
HN
Ala
AEE
Ala
O
O
H
O
O H
H
O
H
O
O
O
H
O
O
O
H
HO
HO
O2C
H O
HN
Ala
O
MLE II
OSBS
CO2
CO2
O
O
O
O H
O
O
O
O2C
O
O2C
O
racemization
Single-site mutants of
the L-Ala-D/L-Glu
epimerase and The
Ring opening muconate lactonizing
enzyme II show the osuccinyl-benzoatesynthase activity
b-elimination
Schmidt, D. M. Z.; Mundorff, E. C.; Dojka, M.; Bermudez, E.; Ness, J. E.; Govindarajan, S. G.;
Babbitt, P. C.; Minshull, J.; Gerlt, J. A. Biochemistry, 2003, 42, 8387-8393.
3. 2-Enoyl-CoA hydratase (Crotonase) and
4-CBA-CoA dehalogenase have similar active sites
but catalyze different reactions
O
crotonase
H2O
CoAS
O
OH
Michael addition
CoAS
Nucleophilic substitution
O
O
4-CBA-CoA dehalogenease
+ Cl
CoAS
CoAS
H2O
Cl
OH
Active site overlapping resulted in a seven-residue
substitution in 4-CBA-CoA dehalogenase which showed
crotonase activity.
Xiang, H.; Luo, L.; Taylor, K. L.; Dunaway-Mariano, D. Biochemistry, 1999, 38, 7638-7652.
3. The reaction specificity of alanine racemase
altered into that of an aminotransferase
by a double active-site mutation
alanine
racemase
H2N
H2N
CO2
L-alanine
CO2
O
D-alanine
D-amino acid
aminotranferase
CO2
pyruvate
Arg219Glu resulted in 103-fold decrease in racemase activity and
a 5.4-fold increase in transaminase activity. Tyr265Ala eliminated
racemase activity.
(a) Watanabe, A.; Yoshimura, T.; Mikami, B.; Hayashi, H.; Kagamiyama, H.; Esaki, N.
J. Biol. Chem., 2002, 277, 19166-19172. (b) Yow, G.-Y.; Watanabe, A.; Yoshimura, T.; Esaki, N.
J. Mol. Catal. B: Enzym., 2003, 23, 311-319.
3. Conversion of ala racemase into an
aldolase with a single-point mutation
Alanine racemase from Geobacillus stearothermophilus (EC 5.1.1.1)
L-threonine aldolase (EC 4.1.2.5)
base
H2N
CO2
O
O P O
O
OH
D-(2R,3S)-phenylserine
CO2
HO
H
N
N
H
H
O
CH3
b-phenylserine-PLP aldimine
O
H2N
CO2
+
glycine
retro-aldol reaction
Tyr265Ala mutant: 3  103 fold reduced racemase activity and 2.3  105
fold increased aldolase activity with D-(2R,3S)-phenylserine, compared
to the wild type enzyme. Highly enantioselective.
Seebeck, F.P.; Hilvert, D. J. Am. Chem. Soc., 2003, 125, 10158-10159.
H
4. Hydrolysis of nitriles by a papain mutant
R2
R2
H
N
CN
R1
S Enzyme
R1
a thioimidate
Wild type
nitrile hydratase (EC 4.2.1.84)
nitrilases (EC 3.5.5.X)
papain (EC 3.4.22.2)
NH
H
N
X
Papain
Gln19Glu
O2C Glu19
H
R2
H
N
N
H
R2
S Enzyme
R1
O
H
N
NH2
R2
O
H
N
R1
H2O
Dufour, E.; Storer, A.C.; Ménard, R. Biochemistry, 1995, 34, 16382-16388.
OH + NH3
R1
4. Aldol addition activity of C. antarctica lipase B
O
O
R
H
R
C. antarctica
lipase B
Ser105Ala HO
Ala105
CH3 H
O
H
R
Asp187
O
H
N
N
O
H
H
Oxyanion
hole
R
His224
Substrate docking
250 ps dynamics
O
H
3-methyl-butanal
Asp187
Gln106
Ala105
Thr40
His224
Critical H-bond distance
Trp104
(a) Branneby, C.; Carlqvist, P.; Magnusson, A.; Hult, K.; Brinck, T.; Berglund, P.
J. Am. Chem. Soc., 2003, 125, 874-875.
(b) Branneby, C.; Carlqvist, P.; Hult, K.; Brinck, T.; Berglund, P.
J. Mol. Catal. B: Enzym., 2004, 31, 123-128.
5. Conversion of cyclophilin into
a proline-specific endopeptidase (hydrolase)
Cyclophilin (EC 5.2.1.8)
O
cyclophilin
N
OH
O
O
N
OH
R
O
R
H2N
cis X-Pro
Cis-trans isomerization
NH2
trans X-Pro
1. Several candidate sites for the serine evaluated
2. Rest of triad introduced in best serine mutant
New hydrolytic activity was 8  108-fold over the uncatalyzed reaction
Quéméneur, E.; Moutiez, M.; Charbonnier, J.-B.; Ménez, A. Nature, 1998, 391, 301-304.
6. Introduction of catalytic activity into
non-catalytic proteins
Scytalone dehydratase activity (EC 4.2.1.94) into nuclear transport factor 2
OH O
HO
OH OH
- H2O
OH
a mutant
of NTF2
HO
8 mutations caused 150-fold
activity improvement
Nixon, A. E.; Firestine, S. M.; Salinas, F. G.; Benkovic, S. J. Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 3568-3571.
6. Introduction of catalytic activity
into non-catalytic proteins
Triose phosphate isomerase (TIM, EC 5.3.1.1) activity into ribose binding protein
The most active mutant (NovoTim 1.2) of RBP contains 13-amino acid
substitutions and shows 105-fold rate improvement over the uncatalyzed
reaction.
(a) Looger, L. L.; Dwyer, M. A.; Smith, J. J.; Hellinga, H. W. Nature, 2003, 423, 185-190.
(b) Dwyer, M. A.; Looger, L. L.; Hellinga, H. W. Science, 2004, 304, 1967-1971
Related documents