Download Practice Test 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
COMPASS Algebra
Practice Test 2
• This practice test is 10 items long.
• Record your responses on a sheet of
paper.
• The correct answers are on the slide
after the last question.
• Complete solutions follow the answer
slide.
• Click the mouse or use the spacebar
to advance to the next question.
1.
Which of these is the product
of (x + 2y) and (2x – 3y) ?
A.
 B.
 C.
 D.
 E.
2x2 – 7xy + 6y2
2x2 + xy – 6y2
2x2 + 7xy + 6y2
2x2 – xy – 6y2
2x2 + 7xy – 6y2
2. For all a  o
 A. 4a b
2
B.
 C.
4
b
ab
4a
 D.
b
4
 E.
1
4a 2 b
4a
and b  0,
?
1
ab
3.
This is a graph of which equation?
 A.
2
y   x6
3
B.
3
y  x6
2
 C.
2
y  x6
3
8
6
4
2
 D.
 E.
3
y   x6
2
5
-2
3
y   x6
2
4. What is the solution to the
equation 3(x + 2) – 2(2x + 2) = -2 ?
 A. -12
 B. 10
 C. -4
 D. 4
 E. 12
5. In the Cartesian plane what is the distance
between the points (4, 2 13 ) and (2, 13 ) ?
 A.
6  13
 B.
9 13
 C.
75
 D.
49
 E.
7
6. Simplify: 25
 A.
1
15
 B.
1
75
 C. -375
 D.
1
125
 E. -125
3
2
7. What is the distance from point A to
point B?
A.
2
8
B
 B. 34
 C. 2 2
A
-2
 D.
34
 E.
75
8. For all x ≠ 0 and y ≠ 0,
A.
x5
y4
 B.
y8
x 10
 C.
 D.
 E.
x2 y2
x 10
y8
1
x2 y2
4
3
x y
x 6 y 5
9.
For all x, y, and z,
A. x5y4z2
 B. x6y4z2
 C. x9y4z2
 D. x5y4z3
 E. 2x3y2z
3
2
2
(x y z)
10. If y  2 x
then y  ?
A. 45
B. 64
 C. 30
 D. 9
 E. 15
2
 5 x  12 and
,
x  3
Answers
Algebra Practice Test 2
1.
2.
3.
4.
5.
B
A
D
D
E
6. D
7. D
8. B
9. B
10.A
1.
Which of these is the product
of (x + 2y) and (2x – 3y) ?
A. 2x2 – 7xy + 6y2
 B. 2x2 + xy – 6y2
 C. 2x2 + 7xy + 6y2
 D. 2x2 – xy – 6y2
 E. 2x2 + 7xy – 6y2
( x  2 y )( 2 x  3 y )
2x  3 xy  4 xy  6 y
2
2 x  xy  6 y
2
2
2
2. For all a  o
 A. 4a b
2
B.
 C.
 D.
 E.
4
b
ab
4a
b
4
1
4a 2 b
4a
and b  0,
?
1
ab
Multiply by the reciprocal of the divisor
4a ab
4a
1


 4a 

1
1 1
ab
ab
2
4a b
2
 4a b
1
Recall y = mx +b
3.
This line has a negative, downward slope.
This eliminates B and C.
This is a graph of which equation?
 A.
2
y   x6
3
B.
3
y  x6
2
 C.
2
y  x6
3
The y-intercept is +6
This eliminates E.
8
6
4
2
 D.
 E.
3
y   x6
2
3
y   x6
2
5
-2
The slope is down 3 over 2.
This eliminates A.
4. What is the solution to the
equation 3(x + 2) – 2(2x + 2) = -2 ?
 A. -12
 B. 10
 C. -4
 D. 4
 E. 12
3( x  2)  2(2 x  2)  2
3x  6  4x  4  2
 x  2  2
2 2
 x  4
x4
5. In the Cartesian plane what is the distance
between the points (4, 2 13 ) and (2, 13 ) ?
 A.
6  13
Recall the distance formula.
d  ( x2  x1 )  ( y2  y1 )
2
2
 B.
9 13
2
2
d  ((2)  (4))  ( 13  2 13)
 C.
75
 D.
49
 E.
7
d  (6)  ( 13)  36  13
2
d  49  7
2
6. Simplify: 25
 A.
1
15
 B.
1
75
 C. -375
 D.
1
125
 E. -125
3
2
Negative Exponent
Take the reciprocal.
Rewrite rational exponent
with radical notation
3
2
25 
1
25
3

2
1

125
1
1
 3
3
5
25
 
2
Simplify
7. What is the distance from point A to
point B? Use the Pythagorean Theorem
A.
8
 B. 34
 C. 2 2
 D.
34
 E.
75
a b  c
2
2
2
3 5  c
2
9  25  c
2
34  c
34  c
2
2
2
2
B
3
A
-2
5
8. For all x ≠ 0 and y ≠ 0,
A.
 B.
 C.
 D.
 E.
x5
y4
y8
x 10
x2 y2
x 10
y8
1
x2 y2
4
3
x y
x 6 y 5
Let each negative exponent cross the
division bar and it becomes positive.
8
5 3
y
x 4 y 3
y y
 6 4  10
6 5
x
x y
x x
9.
For all x, y, and z,
o A.
o B.
o C.
o D.
o E.
x5y4z2
x6y4z2
x9y4z2
x5y4z3
2x3y2z
3
2
2
(x y z)
(x3y2z)2
(x3y2z)(x3y2z)
When multiplying like bases,
add the exponents.
x3 + 3 y2 + 2 z1 + 1
x6 y 4 z 2
10. If y  2 x  5x  12 and x  3,
then y  ?
2
y  2 x  5 x  12
A. 45
2
y  2(3)  5(3)  12
B. 64
y  2(9)  5(3)  12
y  18  15  12
 C. 30
y  45
2
 D. 9
 E. 15
Related documents