Download Bernoulli random variable with parameter p

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Introduction to Probability Theory ‧31‧
- Preliminaries for Randomized Algorithms
Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University
Dept. CSIE, Computation Theory Laboratory
January 25, 2006
Outline
• Chapter 3: Discrete random variables
– Bernoulli and binomial distributions
– Geometric distribution
– Negative binomial distribution
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
2
Bernoulli trials (伯努利試驗)
• A Bernoulli trial is an experiment with two different
possible outcomes, labeled success and failure. The
sample space for a single Bernoulli trial is defined as
T = {s, f}, where s represents the outcome success
and f represents the outcome failure.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
3
Bernoulli random variable
• If an experiment consists of a single Bernoulli trial
with parameter p (so that P({s}) = p, and we denote q
= 1 – p) and we let X be the number of successes to
occur, then X is called a Bernoulli random variable
with parameter p.
• Its probability function is very simple:
 p x q1 x , for x  0, 1
p X ( x)  
otherwise
0,
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
4
Bernoulli random variable (contd.)
• Mean and variance for a Bernoulli random variable X
with parameter p:
E[ X ]  0  p X (0)  1 p X (1)  p  E[ X 2 ]
 X2  E[ X 2 ]  (E[ X ]) 2  p  p 2  p(1  p)  pq
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
5
• Many experiments can be modeled as a sequence of
independent Bernoulli trials.
• For example,
– Ten scratch-off lottery tickets are purchased; each ticket
either will or will not win some prize, where p is the
probability of a success occurring for each.
– Each of 100 patients with the same affliction is given
medication A ; each patient will either be cured or not, with
the same success probability p.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
6
Binomial random variable
(二項隨機變數)
• If Y is the number of success to occur in n repeated,
independent Bernoulli trials, each with probability of
success p, then Y is a binomial random variable with
parameter n and p. The range for Y is RY = {0, 1, 2,…,
n}, and its probability function is
 n  y n  y
  p q ,
pY ( y )   y 
 0,

for y  RY .
otherwise.
where q = 1 – p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
7
• 假設老王買了 10 張刮刮樂彩券。假設每張彩券贏得某個獎項的機會
是1/9,而彩券彼此互相獨立。因此每張彩券可視為一次Bernoulli trial;
若令 X 代表會中獎的彩券張數,則 X 具有 n = 10, p = 1/9 的binomial
distribution。
• 則
10   1 
p X ( x)     
 x  9 
x
10 x
8
 
9
, x  0,1, 2,,10.
• 老王的彩券至少有三張會中獎的機率,便是
10   1 
P( X  3)   p X ( x)      
x 3
x 3  x   9 
10
10
x
10 x
8
 
9
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
 0.0906
8
Means and variances for binomial random
variables
 n  x n x
 X  E[ X ]   x  p q
x 0  x 
n
 n  1 x 1 ( n 1) ( x 1)
 p q
 np  
x 1  x  1
 np ( p  q ) n 1
n
 np
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
9
Means and variances for binomial random
variables (contd.)
• Since E[ X 2 ]  E[ X ( X  1)]  E[ X ]  E[ X ( X  1)]   X
we have
 X2  E[ X ( X  1)]   X   X2  E[ X ( X  1)]   X (  X  1)
•
n
 n  x n x
n!
E[ X ( X  1)]   x( x  1)  p q
  x( x  1)
p x q n x
x!( n  x)!
x 0
x2
 x
n
(n  2)!
2
 n(n  1) p 
p x2 q n x
x  2 ( x  2)! ( n  x )!
n
 n(n  1) p 2 ( p  q ) n  2
 n(n  1) p 2
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
10
Means and variances for binomial random
variables (contd.)
• Thus
 X2  E[ X ( X  1)]   X (  X  1)
 n(n  1) p 2  np(np  1)
 np(1  p)
 npq
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
11
• Before introducing the other probability distribution,
we have to be familiar to infinite geometric series
first.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
12
Infinite geometric series
• When | q | < 1,
n
lim
n
i
q
  lim
i 0
n
1  q n1
1

1 q
1 q
d   i d  1

q  
dq  i 0  dq  1  q
d2   i  d 
1

q  
dq  i 0  dq  (1  q) 2

1
 
2
(
1

q
)


2
 
3
(
1

q
)

Computation Theory Lab., Dept. CSIE, CCU, Taiwan
13
Infinite geometric series (contd.)
• Then we will obtain that
 k  i  i   j  j k
1

 q    q 

k 1
i
k
(
1

q
)
i 0 
j k  


• An exercise.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
14
Geometric distribution (幾何分佈)
• Let N be the trial number of the first success in a
sequence of independent Bernoulli trials, each with
parameter p. The probability function for N is
 pq n 1 ,
p N ( n)  
 0,
for n  RN  {1, 2, 3,}
otherwise.
N is called a geometric random variable with
parameter p.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
15
Memoryless property (失憶性)
• If N is a geometric random variable with parameter p,
then
P( N  a  b | N  b)  P( N  a).
where a and b are any positive integers. This is the
only discrete probability law to have this memoryless
property.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
16
• 舉例來說:
• 假設我們現在要搜尋一個得SARS的病患,而當我們找到第一個病患
就停止搜尋。不同的人之間為互相獨立的Bernoulli trials,p = 0.1。
• 假設我們已經檢查了 8 個人,都還沒出現成功的試驗 (找到一個得
SARS的病患),則下一個人是SARS病患的機率並不會因此改變。這
即為失憶性(memoryless property)。
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
17
Means and variances for geometric random
variables
•


n 1
n 1
 N  E[ N ]   n  p N (n)   n  pq
n 1
 p (1  2q  3q 2  )
1
p
(1  q ) 2
1

p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
18
Means and variances for geometric random
variables (contd.)

• Since E[ N ( N  1)]   n(n  1) p N (n)
n 1

  n( n  1) pq n 1
n2
 pq ( 2  6q  12q 2  )
2
2q
 pq
 2
3
(1  q )
p
We have Var[ N ]  E[ N ( N  1)]   N (  N  1)

2q 1  1
q
 2    1  2
p
p p
 p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
19
Negative binomial distribution
(負二項分佈)
• Independent Bernoulli trials, each with probability of
success p, are performed until the rth success occurs.
The number of trials required, Nr , is called a negative
binomial random variable with parameter r, p; its
probability function is as follows:
 n  1 r n  r
 p q , n  RN  {r , r  1, r  2,}

p N r (n)   r  1 
 0,
otherwise.

Computation Theory Lab., Dept. CSIE, CCU, Taiwan
20
Means and variances for negative binomial
random variables
•
N
r
N
r
r
 ,
p
rq
 2
p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
21
Means and variances for negative binomial
random variables (contd.)
 n  1 n r
1
r
r
 q  rp
• E[ N r ]   np 

r 1
(1  q)
p
nr
 r  1

r
•

E[ N r ( N r  1)]   n(n  1)
nr
 rp

r
 (n  1  2)
nr
(n  1)!
p r q nr
(r  1)!(n  r )!
n!
q nr
r!(n  r )!

n
(n  1)! n  r
r
 rp 
q  2rp   q n  r
n  r r!( n  r )!
nr  r 

r

 n  n r 
n
r
 r (r  1) p   q
 2rp   q n  r , where n  n  1, r   r  1
n  r   r  
nr  r 
r pq
 r
p2

r
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
22
Means and variances for negative binomial
random variables (contd.)
• Thus

2
Nr

r pq r  r
 r
   1
2
p
p p

rq
 2
p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
23
Thank you.
References
• [H01] 黃文典教授, 機率導論講義, 成大數學系, 2001.
• [L94] H. J. Larson, Introduction to Probability, Addison-Wesley Advanced
Series in Statistics, 1994; 機率學的世界, 鄭惟厚譯, 天下文化出版。
• [M97] Statistics: Concepts and Controversies, David S. Moore, 1997; 統
計,讓數字說話, 鄭惟厚譯, 天下文化出版。
• [MR95] R. Motwani and P. Raghavan, Randomized Algorithms,
Cambridge University Press, 1995.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
25
Related documents