Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Introduction to Probability Theory ‧31‧
- Preliminaries for Randomized Algorithms
Speaker: Chuang-Chieh Lin
Advisor: Professor Maw-Shang Chang
National Chung Cheng University
Dept. CSIE, Computation Theory Laboratory
January 25, 2006
Outline
• Chapter 3: Discrete random variables
– Bernoulli and binomial distributions
– Geometric distribution
– Negative binomial distribution
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
2
Bernoulli trials (伯努利試驗)
• A Bernoulli trial is an experiment with two different
possible outcomes, labeled success and failure. The
sample space for a single Bernoulli trial is defined as
T = {s, f}, where s represents the outcome success
and f represents the outcome failure.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
3
Bernoulli random variable
• If an experiment consists of a single Bernoulli trial
with parameter p (so that P({s}) = p, and we denote q
= 1 – p) and we let X be the number of successes to
occur, then X is called a Bernoulli random variable
with parameter p.
• Its probability function is very simple:
p x q1 x , for x 0, 1
p X ( x)
otherwise
0,
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
4
Bernoulli random variable (contd.)
• Mean and variance for a Bernoulli random variable X
with parameter p:
E[ X ] 0 p X (0) 1 p X (1) p E[ X 2 ]
X2 E[ X 2 ] (E[ X ]) 2 p p 2 p(1 p) pq
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
5
• Many experiments can be modeled as a sequence of
independent Bernoulli trials.
• For example,
– Ten scratch-off lottery tickets are purchased; each ticket
either will or will not win some prize, where p is the
probability of a success occurring for each.
– Each of 100 patients with the same affliction is given
medication A ; each patient will either be cured or not, with
the same success probability p.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
6
Binomial random variable
(二項隨機變數)
• If Y is the number of success to occur in n repeated,
independent Bernoulli trials, each with probability of
success p, then Y is a binomial random variable with
parameter n and p. The range for Y is RY = {0, 1, 2,…,
n}, and its probability function is
n y n y
p q ,
pY ( y ) y
0,
for y RY .
otherwise.
where q = 1 – p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
7
• 假設老王買了 10 張刮刮樂彩券。假設每張彩券贏得某個獎項的機會
是1/9,而彩券彼此互相獨立。因此每張彩券可視為一次Bernoulli trial;
若令 X 代表會中獎的彩券張數,則 X 具有 n = 10, p = 1/9 的binomial
distribution。
• 則
10 1
p X ( x)
x 9
x
10 x
8
9
, x 0,1, 2,,10.
• 老王的彩券至少有三張會中獎的機率,便是
10 1
P( X 3) p X ( x)
x 3
x 3 x 9
10
10
x
10 x
8
9
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
0.0906
8
Means and variances for binomial random
variables
n x n x
X E[ X ] x p q
x 0 x
n
n 1 x 1 ( n 1) ( x 1)
p q
np
x 1 x 1
np ( p q ) n 1
n
np
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
9
Means and variances for binomial random
variables (contd.)
• Since E[ X 2 ] E[ X ( X 1)] E[ X ] E[ X ( X 1)] X
we have
X2 E[ X ( X 1)] X X2 E[ X ( X 1)] X ( X 1)
•
n
n x n x
n!
E[ X ( X 1)] x( x 1) p q
x( x 1)
p x q n x
x!( n x)!
x 0
x2
x
n
(n 2)!
2
n(n 1) p
p x2 q n x
x 2 ( x 2)! ( n x )!
n
n(n 1) p 2 ( p q ) n 2
n(n 1) p 2
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
10
Means and variances for binomial random
variables (contd.)
• Thus
X2 E[ X ( X 1)] X ( X 1)
n(n 1) p 2 np(np 1)
np(1 p)
npq
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
11
• Before introducing the other probability distribution,
we have to be familiar to infinite geometric series
first.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
12
Infinite geometric series
• When | q | < 1,
n
lim
n
i
q
lim
i 0
n
1 q n1
1
1 q
1 q
d i d 1
q
dq i 0 dq 1 q
d2 i d
1
q
dq i 0 dq (1 q) 2
1
2
(
1
q
)
2
3
(
1
q
)
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
13
Infinite geometric series (contd.)
• Then we will obtain that
k i i j j k
1
q q
k 1
i
k
(
1
q
)
i 0
j k
• An exercise.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
14
Geometric distribution (幾何分佈)
• Let N be the trial number of the first success in a
sequence of independent Bernoulli trials, each with
parameter p. The probability function for N is
pq n 1 ,
p N ( n)
0,
for n RN {1, 2, 3,}
otherwise.
N is called a geometric random variable with
parameter p.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
15
Memoryless property (失憶性)
• If N is a geometric random variable with parameter p,
then
P( N a b | N b) P( N a).
where a and b are any positive integers. This is the
only discrete probability law to have this memoryless
property.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
16
• 舉例來說:
• 假設我們現在要搜尋一個得SARS的病患,而當我們找到第一個病患
就停止搜尋。不同的人之間為互相獨立的Bernoulli trials,p = 0.1。
• 假設我們已經檢查了 8 個人,都還沒出現成功的試驗 (找到一個得
SARS的病患),則下一個人是SARS病患的機率並不會因此改變。這
即為失憶性(memoryless property)。
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
17
Means and variances for geometric random
variables
•
n 1
n 1
N E[ N ] n p N (n) n pq
n 1
p (1 2q 3q 2 )
1
p
(1 q ) 2
1
p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
18
Means and variances for geometric random
variables (contd.)
• Since E[ N ( N 1)] n(n 1) p N (n)
n 1
n( n 1) pq n 1
n2
pq ( 2 6q 12q 2 )
2
2q
pq
2
3
(1 q )
p
We have Var[ N ] E[ N ( N 1)] N ( N 1)
2q 1 1
q
2 1 2
p
p p
p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
19
Negative binomial distribution
(負二項分佈)
• Independent Bernoulli trials, each with probability of
success p, are performed until the rth success occurs.
The number of trials required, Nr , is called a negative
binomial random variable with parameter r, p; its
probability function is as follows:
n 1 r n r
p q , n RN {r , r 1, r 2,}
p N r (n) r 1
0,
otherwise.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
20
Means and variances for negative binomial
random variables
•
N
r
N
r
r
,
p
rq
2
p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
21
Means and variances for negative binomial
random variables (contd.)
n 1 n r
1
r
r
q rp
• E[ N r ] np
r 1
(1 q)
p
nr
r 1
r
•
E[ N r ( N r 1)] n(n 1)
nr
rp
r
(n 1 2)
nr
(n 1)!
p r q nr
(r 1)!(n r )!
n!
q nr
r!(n r )!
n
(n 1)! n r
r
rp
q 2rp q n r
n r r!( n r )!
nr r
r
n n r
n
r
r (r 1) p q
2rp q n r , where n n 1, r r 1
n r r
nr r
r pq
r
p2
r
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
22
Means and variances for negative binomial
random variables (contd.)
• Thus
2
Nr
r pq r r
r
1
2
p
p p
rq
2
p
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
23
Thank you.
References
• [H01] 黃文典教授, 機率導論講義, 成大數學系, 2001.
• [L94] H. J. Larson, Introduction to Probability, Addison-Wesley Advanced
Series in Statistics, 1994; 機率學的世界, 鄭惟厚譯, 天下文化出版。
• [M97] Statistics: Concepts and Controversies, David S. Moore, 1997; 統
計,讓數字說話, 鄭惟厚譯, 天下文化出版。
• [MR95] R. Motwani and P. Raghavan, Randomized Algorithms,
Cambridge University Press, 1995.
Computation Theory Lab., Dept. CSIE, CCU, Taiwan
25