Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Acid-Base Concepts: The Brønsted-Lowry Theory Arrhenius Acid: A substance that dissociates in water to produce hydrogen ions, H+ HA(aq) H+(aq) + A–(aq) Arrhenius Base: A substance that dissociates in water to produce hydroxide ions, OH– MOH(aq) 1 M+(aq) + OH–(aq) חומצות ובסיסים-12 Acid-Base Concepts: The Brønsted-Lowry Theory Brønsted-Lowry Acid: A substance that can transfer hydrogen ions, H+. In other words, a proton donor Brønsted-Lowry Base: A substance that can accept hydrogen ions, H+. In other words, a proton acceptor Conjugate Acid-Base Pairs: Chemical species whose formulas differ only by one hydrogen ion, H+ 2 חומצות ובסיסים-12 Acid-Base Concepts: The Brønsted-Lowry Theory Acid-Dissociation Equilibrium 3 חומצות ובסיסים-12 Acid-Base Concepts: The Brønsted-Lowry Theory Base-Dissociation Equilibrium 4 חומצות ובסיסים-12 Brønsted-Lowry Concept Brønsted-Lowry Acid = Proton donor Brønsted-Lowry Base = Proton acceptor Works for non-aqueous solutions and explains why NH3 is basic: NH3(g) + H2O(ℓ) Base: H+ acceptor 5 NH4+(aq) + OH-(aq) Acid: H+ donor חומצות ובסיסים-12 Conjugate Acid-Base Pairs Conjugate acid-base pairs are molecules or ions related by the loss/gain of one H+: Conjugate Acid H3O+ Conjugate Base H2O CH3COO- CH3COOH NH4 + H2SO4 donate H+ accept H+ NH3 HSO4- HSO4- SO42- HCl Cl- NH4+ and NH2- are not conjugate, conversion requires 2 H+. 6 חומצות ובסיסים-12 Conjugate Acid-Base Pairs Identify the base conjugate to HF(aq) and the acid conjugate to HCO3-(aq). H+ + F- HF Conjugate Base Acid: H+ donor HCO3Base: H+ acceptor + H+ H2CO3 Conjugate Acid ( CO32- is the base conjugate to HCO3- ) 7 חומצות ובסיסים-12 Water’s Role as Acid or Base Water acts as a base when an acid dissolves in water: HBr(aq) + H2O(ℓ) acid base H3O+(aq) + Br-(aq) acid base But water acts as an acid for some bases: H2O(ℓ) + NH3(aq) acid base NH4+(aq) + OH-(aq) acid base Water is amphiprotic - it can donate or accept a proton (act as acid or base). 8 חומצות ובסיסים-12 Lewis Acids & Bases The most general acid-base definition: A Lewis acid accepts a pair of e- to form a bond. A Lewis base donates a pair of e- to form a bond. Acid e- pair acceptor + .. A B Base e- pair donor A B Coordinate covalent bond Coordinate covalent bond: a shared e- pair, with both edonated by the same atom. 9 חומצות ובסיסים-12 Lewis Acids & Bases Examples: H + Lewis acid H+ + B F 10 Lewis acid H O H O H Lewis base H H2O H3O+ H F F H + N H H Lewis base F F H B N F H H חומצות ובסיסים-12 Positive Metal Ions as Lewis Acids Metal ions can act as Lewis acids. They have: • Missing e-. • Empty valence orbitals. • Metal ion + Lewis base → complex ion Ag+ (aq) + 2 :NH3 (aq) [H3N:Ag:NH3]+ (aq) 11 δ- δ+ :O–H - : : Hydroxide ions are Lewis bases. • O is e- rich (has large electronegativity): • Can easily donate an e- pair to a bond. חומצות ובסיסים-12 Positive Metal Ions as Lewis Acids Many metal hydroxides are amphoteric – they react with acids and bases. Aluminum hydroxide can act as a Lewis acid: Al(OH)3(s) + OH-(aq) [Al(OH)4]-(aq) or as a Brønsted-Lowry base: Al(OH)3(s) + 3 H3O+(aq) 12 Al3+(aq) + 6 H2O(ℓ) חומצות ובסיסים-12 Neutral Molecules as Lewis Acids Non-metal oxides act as Lewis acids. • O attracts e- from any multiple bond. • Leaves the other non-metal e- deficient. δ+ δ+ δ- O δ- S S O δ- δ- O δ+ δ- O=C=O O δ- • Susceptible to attack by Lewis base: - H O H O C=O O=C=O 13 O חומצות ובסיסים-12 Acid Strength and Base Strength Weak Acid: An acid that is only partially dissociated in water and is thus a weak electrolyte 14 חומצות ובסיסים-12 Acid Strength and Base Strength 15 חומצות ובסיסים-12 Hydrated Protons and Hydronium Ions HA(aq) H+(aq) + A(aq) Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules. [H(H2O)n]+ n=1 H3O+ n=2 H5O2+ n=3 H7O3+ n=4 H9O4+ For our purposes, H+ is equivalent to H3O+. 16 חומצות ובסיסים-12 Acid Strength and Base Strength H3O+(aq) + A(aq) HA(aq) + H2O(l) Acid Base Acid Base With equal concentrations of reactants and products, what will be the direction of reaction? Stronger acid + Stronger base 17 Weaker acid + Weaker base חומצות ובסיסים-12 Relative Strength of Acids & Bases Strong acids are better H+ donors than weak acids Strong bases are better H+ acceptors than weak bases • Stronger acids have weaker conjugate bases. • Weaker acids have stronger conjugate bases. Strong acid + H2O H3O+ + conjugate base Fully ionized, reverse reaction essentially does not occur. The conjugate base is extremely weak. Weak acid + H2O H3O+ + conjugate base Weakly ionized, reverse reaction readily occurs. The conjugate base is relatively strong. 18 חומצות ובסיסים-12 Relative Strength of Acids & Bases NH4+ + F- NH3 + HF HF has greater tendency to ionize than NH4+. Reactant Favored 19 Acid strength increasing Acid strength: HF > NH4+. (Base strength: NH3 > F-) Conj acid. Conj. base HSO4- H2SO4 BrHBr ClHCl F- HF NH3 NH4+ O2HCH3- OHH2 CH4 Base strength increasing Problem Is the following aqueous reaction product or reactant favored? חומצות ובסיסים-12 Factors That Affect Acid Strength Bond Polarity 20 חומצות ובסיסים-12 Factors That Affect Acid Strength Bond Strength 21 חומצות ובסיסים-12 Factors That Affect Acid Strength Oxoacids 22 חומצות ובסיסים-12 Factors That Affect Acid Strength Oxoacids 23 חומצות ובסיסים-12 Carboxylic Acids & Amines Organic acids Contain the carboxylic acid functional group: 24 חומצות ובסיסים-12 Carboxylic Acids & Amines The carboxylic acid H is acidic (will ionize). All other protons are non acidic: O O + H2O CH3 – C + H3O+ CH3 – C O- OH • O is very electronegative. • O withdraws e- from the O–H bond (weakens O-H). • Makes it easier for H+ to leave. • Once formed, the anion is stabilized by resonance: O- O CH3 – C 25 CH3 – C O- O חומצות ובסיסים-12 Strengths of Carboxylic Acids R-COOH Acetic Hexanoic Chloroacetic Trichloroacetic Trifluoroacetic Acid CH3COOH CH3CH2CH2CH2CH2COOH CH2ClCOOH CCl3COOH CF3COOH Ka 1.8 x 10-5 1.4 x 10-5 0.0013 0.3 0.6 All hydrocarbon R’s “pull” equally… ~equal strength. Add a halogen to R = more e- withdrawing = stronger acid 26 חומצות ובסיסים-12 Carboxylic Acids & Amines .. .. .. Amine groups are basic: R–NH2, R–NHR or R–NR2 • R = any hydrocarbon. • Lone-pair on N accepts a proton (like NH3). 27 חומצות ובסיסים-12 Amino Acids & Zwitterions Amino acids contain acid and amine functional groups. Alpha carbon Name R glycine H alanine CH3 valine (CH3)2CH serine HOCH2 … and others = − − H O R–C–C–O–H NH2 They are crystalline solids (m.p. > 200°C). Why? • The solid is a zwitterion (has multiple charges) − 28 = − H O R–C–C–ONH3+ The acid H+ has transferred to the amine (base) חומצות ובסיסים-12 Amino Acids & Zwitterions Amino acid in solution have pH dependent structures. Alanine: Positively charged 29 base added = − = Zwitterion (no net charge) OH- H O CH3– C– C–ONH2 − acid added − H+ H O CH3– C– C–ONH3+ − = − − H O CH3– C– C–O–H NH3+ Negatively charged חומצות ובסיסים-12 Dissociation of Water Dissociation of Water: 2 H2O(l) H3O+(aq) + OH(aq) Ion-Product Constant for Water: Kw = [H3O+][OH] at 25 oC: [H3O+] = [OH] = 1.0 × 107 M Kw = (1.0 × 107)(1.0 × 107) = 1.0 × 1014 30 חומצות ובסיסים-12 Dissociation of Water Kw = [H3O+][OH] = 1.0 × 1014 14 1.0 × 10 [H3O+] = [OH] 31 14 1.0 × 10 [OH] = [H3O+] חומצות ובסיסים-12 Dissociation of Water 32 חומצות ובסיסים-12 Dissociation of Water 33 Acidic: [H3O+] > [OH] Neutral: [H3O+] = [OH] Basic: [H3O+] < [OH] חומצות ובסיסים-12 Autoionization of Water Example Calculate the hydronium and hydroxide ion concentrations at 25 °C in a 6.0 M aqueous sodium hydroxide solution. Kw = [H3O+][OH-] = 1.0 x 10-14 NaOH(aq) is strong (100% ionized) so [OH-] = 6.0 M. [H3O+](6.0) = 1.0 x 10-14 [H3O+] = 1.7 x 10-15 M [OH-] = 6.0 M 34 חומצות ובסיסים-12 The pH Scale pH = 35 log[H3O+] Acidic: pH < 7 Neutral: pH = 7 Basic: pH > 7 חומצות ובסיסים-12 [H3O+] pH = 10 The pH Scale The hydronium ion concentration for lemon juice is approximately 0.0025 M. What is the pH when [H3O+] = 0.0025 M? 2 significant figures pH = log(0.0025) = 2.60 2 decimal places 36 חומצות ובסיסים-12 The pOH scale Base concentrations: pOH = −log10[OH-] A neutral solution (25°C) has: pOH = −log10[1.0 x 10-7] = −(−7.00) = 7.00 Since Kw = [ H3O+ ][ OH- ] = 1.0 x 10-14 −log(KW)= −log[H3O+] + (−log[OH-]) = −log(1.0 x 10-14) pKw = pH + pOH = 14.00 (Valid in all aq. solns. at 25°C: acidic, neutral or basic) 37 חומצות ובסיסים-12 pH Calculations Given two aqueous solutions (25°C). Solution A: [OH-] = 4.3 x 10-4 M, Solution B: [H3O+] = 7.5 x 10-9 M. Which has the higher pH? Which is more acidic? Solution A: pOH = −log[ OH-] = 3.37 pH + pOH = pKw = 14.00 pH = 10.63 Solution B: pH = −log[ H3O+] = 8.12 A has higher pH, B is more acidic 38 חומצות ובסיסים-12 Measuring pH H3O+ concentrations can be measured with an: Electronic pH meter: • fast and accurate. • preferred method. 39 Acid-base indicator: • substance changes color over a small pH range. • may have multiple colors (e.g. bromthymol blue). • one “color” may be colorless (e.g. phenolphthalein). • cheap and convenient. חומצות ובסיסים-12 Measuring pH Acid–Base Indicator: A substance that changes color in a specific pH range. Indicators exhibit pH-dependent color changes because they are weak acids and have different colors in their acid (HIn) and conjugate base (In) forms. HIn(aq) + H2O(l) Color A 40 H3O+(aq) + In(aq) Color B חומצות ובסיסים-12 Equilibria in Solutions of Weak Acids HA(aq) + H2O(l) H3O+(aq) + A(aq) [H3O+][A] Acid-Dissociation Constant: Ka = [HA] 41 חומצות ובסיסים-12 -12חומצות ובסיסים 42 Calculation of [H+] in a Water Solution of a Weak Acid x 0.05, then a x a • If a • Note x = [H+]eq and a = [HB]o + [H ]eq x = a [HB]o If the % ionization is less than 5%, your assumption is valid. If not, solve for x using the quadratic equation • % ionization can be obtained by multiplying 100% [H + ]eq x %= × 100% a [HB] o 43 Copyright ©2016 Cengage Learning. All Rights Reserved. חומצות ובסיסים-12 Equilibria in Solutions of Weak Acids The pH of 0.250 M HF is 2.036. What are the values of Ka and pKa for hydrofluoric acid? HF(aq) + H2O(l) H3O+(aq) + F(aq) 0.250 ≈0 0 x +x +x 0.250 x x x x = [H3O+] = 102.036 = 0.00920 M 44 חומצות ובסיסים-12 pKa = log(Ka) Equilibria in Solutions of Weak Acids Ka = [H3O+][F] [HF] [F] = [H3O+] = 0.00920 M [HF] = 0.250 x = 0.250 0.00920 = 0.241 M Ka = [H3O+][F] [HF] (0.00920)(0.00920) = 0.241 = 3.51 × 104 pKa = log(Ka) = log(3.51 × 104) = 3.455 45 חומצות ובסיסים-12 Calculating Equilibrium Concentrations of Weak Acids Calculate the pH of a 0.10 M HCN solution. At 25 oC, Ka = 4.9 × 1010. HCN(aq) + H2O(l) 0.10 ≈0 0 x +x +x 0.10 x x x Ka = 46 H3O+(aq) + CN(aq) [H3O+][CN] [HCN] חומצות ובסיסים-12 Calculating Equilibrium Concentrations of Weak Acids (x)(x) x2 ≈ 4.9 × 1010 = (0.10 x) 0.10 x = [H3O+] = 7.0 × 106 M pH =log([H3O+]) = log(7.0 × 106) = 5.15 47 חומצות ובסיסים-12 Percent Dissociation in Solutions of Weak Acids Percent dissociation = 48 [HA]dissociated [HA]initial חומצות ובסיסים-12 × 100% Polyprotic Acids Some acids “release” multiple H+ Acid(aq) H2S Name Hydrosulfuric Acid H3PO4 H2CO3 HOOC-COOH C3H5(COOH)3 Phosphoric Acid Carbonic Acid Oxalic Acid Citric Acid Acidic H 2 3 2 2 3 Each H+ ionization has a different Ka. • 1st proton is easiest to remove • 2nd is harder, etc. 49 חומצות ובסיסים-12 Polyprotic Acids 50 חומצות ובסיסים-12 Ka Values for Polyprotic Acids Phosphoric acid (H3PO4) has three acidic protons: H3O+(aq) + H2PO4- (aq) Ka = 7.2 x 10-3 H2PO4-(aq) + H2O(ℓ) H3O+(aq) + HPO42- (aq) Ka = 6.3 x 10-8 HPO42-(aq) + H2O(ℓ) H+ harder to remove H3PO4(aq) + H2O(ℓ) H3O+(aq) + PO43- (aq) Ka = 4.6 x 10-13 51 חומצות ובסיסים-12 Equilibria in Solutions of Weak Bases B(aq) + H2O(l) Base Acid BH+(aq) + OH(aq) Acid Base [BH+][OH] Base-Dissociation Constant: Kb = [B] NH3(aq) + H2O(l) NH4+(aq) + OH(aq) [NH4+][OH] Kb = [NH3] 52 חומצות ובסיסים-12 Equilibria in Solutions of Weak Bases 53 חומצות ובסיסים-12 Equilibria in Solutions of Weak Bases Calculate the pH of a 0.40 M NH3 solution. At 25 oC, Kb = 1.8 × 105. NH3(aq) + H2O(l) NH4+(aq) + OH(aq) 0.40 0 ≈0 x +x +x 0.40 x x x [NH4+][OH] Kb = [NH3] 54 חומצות ובסיסים-12 Equilibria in Solutions of Weak Bases (x)(x) x2 ≈ 1.8 × 105 = (0.40 x) 0.40 x = [OH] = 0.0027 M 14 1.0 × 10 [H3O+] = = 3.7 × 1012 M 0.0027 pH =log([H3O+]) = log(3.7 × 1012) = 11.43 55 חומצות ובסיסים-12 Relation Between Ka and Kb NH4+(aq) + H2O(l) H3O+(aq) + NH3(aq) Ka NH3(aq) + H2O(l) NH4+(aq) + OH(aq) Kb H3O+(aq) + OH(aq) Kw 2 H2O(l) Ka × Kb = [H3O+][NH3] [NH4+] × [NH4+][OH] [NH3] = [H3O+][OH] = Kw = (5.6 × 1010)(1.8 × 105) = 1.0 × 1014 56 חומצות ובסיסים-12 Relation Between Ka and Kb Ka × Kb = Kw conjugate acid-base pair Ka = Kw Kb Kb = Kw Ka pKa + pKb = pKw = 14.00 57 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Yield Neutral Solutions The following ions do not react appreciably with water to produce either H3O+ or OH ions: 58 • Cations from strong bases: • Alkali metal cations of group 1a (Li+, Na+, K+) • Alkaline earth metal cations of group 2a (Mg2+, Ca2+, Sr2+, Ba2+), except for Be2+ • Anions from strong monoprotic acids: • Cl, Br, I, NO3, and ClO4 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Yield Acidic Solutions Salts such as NH4Cl that are derived from a weak base (NH3) and a strong acid (HCl) yield acidic solutions. NH4+(aq) + H2O(l) H3O+(aq) + NH3(aq) Ammonium ion (NH4+) is the conjugate acid of the weak base ammonia (NH3) while chloride ion (Cl) is neither acidic nor basic. 59 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Yield Acidic Solutions Hydrated cations of small, highly charged metal ions, such as Al3+. 60 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Yield Acidic Solutions 61 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Yield Basic Solutions Salts such as NaCN that are derived from a strong base (NaOH) and a weak acid (HCN) yield basic solutions. CN(aq) + H2O(l) HCN(aq) + OH(aq) Cyanide ion (CN) is the conjugate base of the weak acid hydrocyanic acid (HCN) while sodium ion (Na+) is neither acidic nor basic. 62 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Contain Acidic Cations and Basic Anions The pH of an ammonium carbonate solution, (NH4)2CO3, depends on the relative acid strength of the cation and the relative base strength of the anion. Is it acidic or basic? 63 חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Contain Acidic Cations and Basic Anions (NH4)2CO3: NH4+(aq) + H2O(l) CO32(aq) + H2O(l) 64 H3O+(aq) + NH3(aq) Ka HCO3(aq) + OH(aq) Kb Three possibilities: • Ka > Kb: The solution will contain an excess of H3O+ ions (pH < 7). • Ka < Kb: The solution will contain an excess of OH ions (pH > 7). • Ka ≈ Kb: The solution will contain approximately equal concentrations of H3O+ and OH ions (pH ≈ 7). חומצות ובסיסים-12 Acid–Base Properties of Salts Salts That Contain Acidic Cations and Basic Anions (NH4)2CO3: NH4+(aq) + H2O(l) H3O+(aq) + NH3(aq) Ka CO32(aq) + H2O(l) HCO3(aq) + OH(aq) Kb 1.0 × 1014 10 Ka for NH4+ = = = 5.6 × 10 Kb for NH3 1.8 × 105 Kw Kb for CO32 = 65 Kw Ka for HCO3 1.0 × 1014 4 = = 1.8 × 10 5.6 × 1011 Basic, Ka < Kb חומצות ובסיסים-12 Acid–Base Properties of Salts 66 חומצות ובסיסים-12 pH of a Salt Solution What is the pH of a 1.50 M Na2CO3(aq)? Kb = 2.1 x 10-4 CO32-(aq) + H2O(ℓ) [ ]initial [ ]change [ ]equil 1.50 -x 1.50 - x HCO3-(aq) + OH-(aq) 0 +x x 0 +x x 2 2 -][OH-] x x [HCO 3 Kb = 2.1 x 10-4 = = ≈ 2(1.50 – x) 1.50 [CO3 ] x = 1.77 x 10-2 pOH = −log(1.77 x 10-2) = 1.75 pH = 14.00 - 1.75 = 12.25 67 חומצות ובסיסים-12 pH of a Salt Solution 0.132 M NH4Br? Acidic, basic or neutral? Ka(NH4+) = 5.6 x 10-10. NH4+(aq) + H2O(ℓ) [ ]initial [ ]change [ ]equil 0.132 -x 0.132 - x 0 +x x O+] Ka = 5.6 x 10-10 = [NH3][H+3 [NH4 ] x = 8.57 x 10-6 68 NH3(aq) + H3O+(aq) 0 +x x x2 x2 = ≈ (0.132 – x) 0.132 pH = −log(8.57 x 10-6) = 5.07 Acidic! חומצות ובסיסים-12 The Common-Ion Effect Common-Ion Effect: The shift in the position of an equilibrium on addition of a substance that provides an ion in common with one of the ions already involved in the equilibrium CH3CO2H(aq) + H2O(l) 69 H3O+(aq) + CH3CO2–(aq) חומצות ובסיסים-12 The Common-Ion Effect The pH of 0.10 M acetic acid is 2.89. Calculate the pH of a solution that is prepared by dissolved 0.10 mol of acetic acid and 0.10 mol sodium acetate in enough water to make 1.00 L of solution. CH3CO2H(aq) + H2O(l) 0.10 ≈0 0.10 –x +x +x 0.10 – x x 0.10 + x Ka = 70 H3O+(aq) + CH3CO2–(aq) [H3O+][CH3CO2–] [CH3CO2H] חומצות ובסיסים-12 The Common-Ion Effect (x)(0.10 + x) x(0.10) ≈ 1.8 × 10–5 = 0.10 (0.10 – x) x = [H3O+] = 1.8 × 10–5 M pH = –log([H3O+]) = –log(1.8 × 10–5) = 4.74 71 חומצות ובסיסים-12 The Common-Ion Effect 72 חומצות ובסיסים-12 The Common-Ion Effect Le Châtelier’s Principle CH3CO2H(aq) + H2O(l) H3O+(aq) + CH3CO2–(aq) The addition of acetate ion to a solution of acetic acid suppresses the dissociation of the acid. The equilibrium shifts to the left. 73 חומצות ובסיסים-12 The Common-Ion Effect 74 חומצות ובסיסים-12 Buffer Solutions Buffer Solution: A solution that contains a weak acid and its conjugate base and resists drastic changes in pH Weak acid + Conjugate base 75 For example: CH3CO2H + CH3CO2– HF + F– NH4+ + NH3 H2PO4– + HPO42– חומצות ובסיסים-12 Buffer Solutions Buffer = chemical system that resists changes in pH. Example Add 0.010 mol of HCl or NaOH to: 1 L of solution Pure water Initial 7.00 [CH3COOH] = 0.5 M + [CH3COONa] = 0.5 M 4.74 pH after HCl 2.00 4.72 after NaOH 12.00 4.76 A buffered solution 76 חומצות ובסיסים-12 Buffer Action Buffers must contain: • A weak acid to react with any added base. • A weak base to react with any added acid. • These components must not react with each other. Buffers are made with ~equal quantities of a conjugate acid-base pair. (e.g. CH3COOH + CH3COONa) 77 חומצות ובסיסים-12 Buffer Action Added OH- removed by the acid: CH3COOH + OHCH3COO- + H2O Added H3O+ removed by the conjugate base: CH3COO- + H3O+ CH3COOH + H2O 78 חומצות ובסיסים-12 Buffer Action The equilibrium maintains the acid/base ratio. CH3COOH + H2O CH3COO- + H3O+ pH remains stable. 79 חומצות ובסיסים-12 Buffer Action Blood pH • Blood is buffered at pH = 7.40 ± 0.05. pH too low: acidosis. pH too high: alkalosis. • CO2 generates the most important blood buffer. CO2(aq) + H2O(ℓ) H2CO3(aq) + H2O(ℓ) 80 H2CO3(aq) H3O+(aq) + HCO3-(aq) חומצות ובסיסים-12 The pH of Buffer Solutions Depends on the [acid]/[base] – not absolute amounts. Henderson-Hasselbalch equation [H3O+] = Ka log [H3 O+] [HA] = log Ka + log [A-] -] [A pH = pKa + log [HA] Note: pH = pKa 81 [HA] [A-] With pKa = -log Ka when [HA] = [A-] +] [BH pOH = pKb + log [B] B: weak base חומצות ובסיסים-12 The pH of Buffer Solutions What is the pH of a 0.050 M (monoprotic) pyruvic acid + 0.060 M sodium pyruvate buffer? Ka = 3.2 x 10-3. pH = – log(3.2 x 10-3) + log(0.060/0.050) = 2.49 + 0.08 = 2.57 What is the HPO42-/H2PO4- ratio in blood at pH =7.40. Ka(H2PO4- ) = Ka,2(H3PO4) = 6.2 x 10-8. 7.40 = −log(6.2 x 10-8) + log([HPO42-]/[H2PO4-]) log([HPO42-]/[H2PO4-]) = 0.192 [HPO42-]/[H2PO4-] = 1.5 82 חומצות ובסיסים-12 Common Buffers pH weak acid weak base Ka(weak acid) pKa 4 lactic acid lactate ion 1.4 x 10-4 3.85 5 acetic acid acetate ion 1.8 x 10-5 4.74 6 carbonic acid hydrogen carbonate ion 4.3 x 10-7 6.37 7 dihydrogen phosphate hydrogen phosphate ion 6.3 x 10-8 7.20 8 hypochlorous acid hypochlorite ion 6.8 x 10-8 7.17 9 ammonium ion ammonia 5.6 x 10-10 9.25 carbonate ion 4.7 x 10-11 10.33 10 hydrogen carbonate Useful buffer range: pH = pKa ±1 (10:1 or 1:10 ratio of [A-]/[HA]). 83 Buffer Capacity: The amount of acid (or base) that can be added without large pH changes. חומצות ובסיסים-12 Addition of Acid or Base to a Buffer 1.0 L of buffer is prepared with [NaH2PO4] = 0.40 M and [Na2HPO4] = 0.25 M. Calculate the pH of: (a) the buffer (b) after 0.10 mol of NaOH is added. Ka (H2PO4-) = 6.3 x 10-8 pKa = -log(6.3 x 10-8) = 7.20 (a) No base added: [A-] pH = pKa + log [HA] 84 pH = 7.20 + log 0.25 = 7.00 0.40 חומצות ובסיסים-12 Addition of Acid or Base to a Buffer 1.00 L Buffer: [NaH2PO4]= 0.40 M ; [Na2HPO4] = 0.25 M. (b) calculate pH after 0.10 mol of NaOH is added. Ka (H2PO4-) = 6.3 x 10-8 (b) 0.10 mol of NaOH, converts conj. acid to base: ninitial nadded nafter H2PO4- + OH0.40 0.10 (0.40 – 0.10) 0 [A-] pH = pKa + log [HA] → HPO42- + H2O 0.25 (0.25 + 0.10) Use n directly. [ ] = n/ V and V is the same for both (cancels) pH = 7.20 + log 0.35 = 7.27 0.30 85 חומצות ובסיסים-12 Acid-Base Titrations • Standard solution (titrant) is added from a buret. • Equivalence occurs when a stoichiometric amount of titrant has been added. 86 חומצות ובסיסים-12 Acid-Base Titrations An indicator is used to find the end point. • Color change observed. • End point ≠ equivalence point (should be close...). At the equivalence point: ntitrant = nanalyte ntitrant = Vtitrant [titrant] nanalyte= Vanalyte[analyte] 87 חומצות ובסיסים-12 Detection of the Equivalence Point The acid-Base indicator is a weak acid that changes color with changes in pH. HIn(aq) + H2O(ℓ) H3O+(aq) + In-(aq) color in acid color in base Observed color will vary (depends on the relative amounts of HIn and In- in solution). Ka = 88 [H3O+][In-] [HIn] חומצות ובסיסים-12 Detection of the Equivalence Point The acidic form dominates when the [HIn] >> [In-] If [HIn] = 10 [In-] Ka = -pKa = -pH - 1 [H3O+][In-] [H3O+] = [HIn] 10 pH = pKa -1 The basic color dominates when [In-] >> [HIn] If 89 [In-] = 10 [HIn] -pKa = 1 - pH Ka = [H3O+][In-] = 10 [H3O+] [HIn] pH = pKa +1 חומצות ובסיסים-12 Detection of the Equivalence Point 90 חומצות ובסיסים-12 Titration of Strong Acid with Strong Base Acid-base titration curve = plot of pH vs Vtitrant added. Titrate 50.0 mL of 0.100 M HCl with 0.100 M NaOH Initial pH = -log(0.100) = 1.000 (fully ionized acid) 0.100 mol nacid = 0.0500 L L = 5.00 x 10-3 mol 91 חומצות ובסיסים-12 Titration of Strong Acid with Strong Base After 40.0 mL of base added (before equivalence) Base removes H3O+ : H O+ + OH- 2 H O 3 2 Acid concentration becomes: [H3 O+] nacid – nbase added = Vacid(ℓ) + Vbase(ℓ) added -3 – 4.00 x 10-3) mol (5.00 x 10 = 0.0111 M [H3O+] = (0.0500 + 0.0400) L pH = -log(0.0111) = 1.95 At Equivalence (50.0 mL added) All acid and base react. Neutral salt. pH = 7.00. 92 חומצות ובסיסים-12 Titration of Strong Acid with Strong Base After Equivalence (50.2 mL added) All acid consumed. nOH- added = 0.0502 L 0.100 mol = 5.02 x 10-3 mol L original nacid = 0.0500 L 0.100 mol = 5.00 x 10-3 mol L nOH- remaining = 0.02 x 10-3 mol Vtotal = (0.0500 + 0.0502) L = 0.1002 L pOH = - log(0.02 x10-3 / 0.1002) = 3.70 93 pH = 14.00 – 3.70 = 10.30 חומצות ובסיסים-12 Titration of Strong Acid with Strong Base Vtitrant/mL Vexcess/mL Vtotal/mL 94 [OH-]/mol L-1 pH 50.0 0 100.0 0 7.00 50.1 0.1 100.1 0.0001 10.00 50.2 0.2 100.2 0.0002 10.30 51 1 101.0 0.0010 11.00 55 5 105.0 0.0048 11.67 60 10 110.0 0.0091 11.96 70 20 120.0 0.0167 12.22 80 30 130.0 0.0200 12.30 0.1 mL of base increased the pH by 3 units! חומצות ובסיסים-12 Titration of Strong Acid with Strong Base 95 חומצות ובסיסים-12 Titration of Weak Acid with Strong Base More complicated. • Weak acid is in equilibrium with its conjugate base. Example Titrate 50.0 mL of 0.100 M acetic acid with 0.100 M NaOH. What is the pH after the following titrant additions: 0 mL, 40.0 mL, 50.0 mL, and 50.2 mL? 0 mL added HA + H2O H3O+ + A- +][A-] 2 [H O x -5 3 Ka = 1.8 x 10 = ≈ [HA] (0.100) 96 pH = -log(0.0013) = 2.88 x = 0.0013 חומצות ובסיסים-12 Titration of Weak Acid with Strong Base 40.0 mL added 50 mL of 0.100 M ninitial nadded nleft HA(aq) + OH-(aq) A-(aq) + H2O(ℓ) 0.00500 0.00400 0.00100 Each OH- removes 1 HA… nleft = 0.00500 - 0.00400 0.00400 …and makes 1 A40 mL of 0.100 M Vtotal = (50.0 + 40.0) mL = 90.0 mL = 0.0900 L 97 חומצות ובסיסים-12 Titration of Weak Acid with Strong Base 40.0 mL added (continued) Henderson-Hasselbalch: [A-] = nA-/ V pH = -log(1.8 x 10-5) (0.00400/0.0900) + log (0.00100/0.0900) [HA] = nHA/ V Note: V cancels (could be omitted) 0.0400 pH = 4.74 + log = 5.35 0.0100 98 חומצות ובסיסים-12 Titration of Weak Acid with Strong Base (c) 50.0 mL added Equivalence. All HA is converted to A-. HA(aq) + OH-(aq) ninitial nadded nleft A-(aq) + H2O(ℓ) 0.00500 0.00500 0 0.00500 Vtotal= 100.0 mL, so [A-] = 0.00500 mol/0.100 L = 0.0500 M 99 A- is basic! חומצות ובסיסים-12 Titration of Weak Acid with Strong Base Use Kb to solve for the [OH-] generated by [A-]: [OH-][HA] Kb = [A-] A+ (0.0500 - x) Kb = 5.6 x 10-10 pOH = 5.28 100 Kb = Kw / Ka = 5.6 x 10-10 H2O 2 x ≈ 0.0500 HA x + OHx x = 5.3 x 10-6 M pH = 14 - pOH = 8.72 חומצות ובסיסים-12 Titration of Weak Acid with Strong Base (c) 50.2 mL added 0.2 mL of “extra” OH- dominates pH. Ignore any contribution from A-. [OH-] = (0.0002 L x 0.100 mol/L) / 0.1002 L = 2.0 x 10-4 M pOH = 3.7 pH = 14.0 – 3.7 = 10.3 101 חומצות ובסיסים-12 Titration of Weak Acid with Strong Base Titrate of 50.0 mL of 0.100 M acetic acid with 0.100 M NaOH. 102 pH = pKa at 50% titration (25 mL) pKa (acetic acid) = 4.74. Short vertical section compared to strong acid/strong base. חומצות ובסיסים-12 Titration of Weak Acid with Strong Base 103 pH = pKa at 50% titration Weaker acid = shorter vertical section חומצות ובסיסים-12 Titration of Weak Base with Strong Acid 104 50.0 mL of 0.100 M ammonia titrated with 0.100 M HCl. • pH = pKa at 50% to equivalence (pKa = 9.25). חומצות ובסיסים-12 Titration of Polyprotic Acids & Bases Maleic acid: HOOC–CH=CH–COOH (diprotic acid) 105 Sodium carbonate Na+(aq) + CO32-(aq) (basic anion) חומצות ובסיסים-12