Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
P28.2 (a) (b) P28.4 (a) V term IR becomes 10.0 V I 5.60 so I 1.79 A . Vterm Ir becomes 10.0 V 1.79 A 0.200 so 10.4 V . Here I R r , so I Rr 12.6 V 2.48 A . 5.00 0.080 0 Then, V IR 2.48 A 5.00 12.4 V . (b) Let I1 and I2 be the currents flowing through the battery and the headlights, respectively. Then, I1 I2 35.0 A , and I1r I2r 0 so I2 35.0 A 0.080 0 I2 5.00 12.6 V giving I2 1.93 A . Thus, V2 1.93 A 5.00 9.65 V . FIG. P28.4 Rp P28.6 (a) 1 4.12 1 7.00 1 10.0 Rs R1 R2 R3 4.00 4.12 9.00 17.1 (b) V IR FIG. P28.6 34.0 V I 17.1 I 1.99 A for 4.00 , 9.00 resistors. Applying V IR , 1.99 A 4.12 8.18 V 8.18 V I 7.00 so I 1.17 A for 7.00 resistor 8.18 V I 10.0 so I 0.818 A for 10.0 resistor. P28.9 If we turn the given diagram on its side, we find that it is the same as figure (a). The 20.0 and 5.00 resistors are in series, so the first reduction is shown in (b). In addition, since the 10.0 , 5.00 , and 25.0 resistors are then in parallel, we can solve for their equivalent resistance as: Req 1 1 10.0 5.001 25.10 2.94 . This is shown in figure (c), which in turn reduces to the circuit shown in figure (d). Next, we work backwards through the diagrams applying I V R and V IR alternately to every resistor, real and equivalent. The 12.94 resistor is connected across 25.0 V, so the current through the battery in every diagram is I V 25.0 V 1.93 A R 12.94 . In figure (c), this 1.93 A goes through the 2.94 equivalent resistor to give a potential difference of: V IR 1.93 A 2.94 5.68 V . From figure (b), we see that this potential difference is the same across V ab , the 10 resistor, and the 5.00 resistor. Vab 5.68 V (b) Therefore, . (a) Since the current through the 20.0 resistor is also the current through the 25.0 line ab, I V ab 5.68 V 0.227 A 227 m A R ab 25.0 . FIG. P28.9 P28.15 1 1 Rp 3.00 1.00 1 0.750 R s 2.00 0.750 4.00 6.75 Ibattery V 18.0 V 2.67 A R s 6.75 P2 2.67 A 2.00 2 P I2R : P2 14.2 W P4 2.67 A in 2.00 4.00 A 28.4 W V 2 2.67 A 2.00 5.33 V , V 4 2.67 A 4.00 10.67 V 2 in 4.00 V p 18.0 V V 2 V 4 2.00 V V 3 V1 P3 P1 P28.20 V 3 R3 2 2.00 V 2 3.00 V1 2.00 V 2 R1 1.00 1.33 W 4.00 W FIG. P28.15 in 3.00 in 1.00 15.0 7.00 I1 2.00 5.00 0 5.00 7.00I1 so I1 0.714 A I3 I1 I2 2.00 A 0.714 I2 2.00 FIG. P28.20 so 2.00 1.29 5.00 2.00 0 I2 1.29 A 12.6 V P28.21 We name currents I1 , I2 , and I3 as shown. From Kirchhoff’s current rule, I3 I1 I2 . Applying Kirchhoff’s voltage rule to the loop containing I2 and I3 , 12.0 V 4.00 I3 6.00 I2 4.00 V 0 FIG. P28.21 8.00 4.00 I3 6.00 I2 Applying Kirchhoff’s voltage rule to the loop containing I1 and I2 , 6.00 I2 4.00 V 8.00 I1 0 8.00 I1 4.00 6.00 I2 . Solving the above linear system, we proceed to the pair of simultaneous equations: 8 4I1 4I2 6I2 8I1 4 6I2 or 8 4I1 10I2 I2 1.33I1 0.667 and to the single equation 8 4I1 13.3I1 6.67 I1 14.7 V 0.846 A . Then 17.3 I2 1.33 0.846 A 0.667 and I3 I1 I2 give I1 846 m A ,I2 462 m A ,I3 1.31 A . All currents are in the directions indicated by the arrows in the circuit diagram. P28.23 We use the results of Problem 28.21. (a) By the 4.00-V battery: U V It 4.00 V 0.462 A 120 s 222 J . By the 12.0-V battery: 12.0 V 1.31 A 120 s 1.88 kJ . (b) (c) By the 8.00- resistor: I2R t 0.846 A 8.00 120 s 687 J . By the 5.00- resistor: 0.462 A 2 5.00 120 s 128 J . By the 1.00- resistor: 0.462 A 2 1.00 120 s 25.6 J . By the 3.00- resistor: 1.31 A 2 3.00 120 s 616 J . By the 1.00- resistor: 1.31 A 2 1.00 120 s 205 J . 2 222 J 1.88 kJ 1.66 kJ from chemical to electrical. 687 J 128 J 25.6 J 616 J 205 J 1.66 kJ from electrical to internal. P28.32 (a) I t I0etRC I0 Q 5.10 106 C 1.96 A RC 1300 2.00 109 F 9.00 106 s 61.6 m A I t 1.96 A exp 1300 2.00 109 F (b) 8.00 106 s 0.235 C q t Q etRC 5.10 C exp 1 300 2.00 109 F (c) The magnitude of the maximum current is I0 1.96 A . P28.39 et RC 12.0 et 12.0 s 4.00 106 (a) RC 4.00 106 3.00 106 F 12.0 s (b) I R FIG. P28.39 q C 1 et RC 3.00 106 12.0 1 et 12.0 q 36.0 C 1 et 12.0 P28.41 V Igrg I Ig R p Rp , or I 3.00 A et 12.0 Igrg I I g Ig 60.0 I I g I 0.500 m A Therefore, to have I 0.100 A 100 m A when g : FIG. P28.41 Rp 0.500 m A 60.0 99.5 m A 0.302 .