Download Solutions - UMD Physics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
P28.2
(a)
(b)
P28.4
(a)
V term  IR
becomes
10.0 V  I 5.60 
so
I 1.79 A .
Vterm    Ir
becomes
10.0 V     1.79 A  0.200 
so
  10.4 V .
Here   I R  r , so I

Rr

12.6 V
 2.48 A .
 5.00   0.080 0 
Then, V  IR   2.48 A  5.00   12.4 V .
(b)
Let I1 and I2 be the currents flowing through the battery and
the headlights, respectively.
Then,
I1  I2  35.0 A , and   I1r I2r  0
so
   I2  35.0 A   0.080 0   I2  5.00   12.6 V
giving
I2  1.93 A .
Thus,
V2  1.93 A  5.00   9.65 V .
FIG. P28.4
Rp 
P28.6
(a)
1
 4.12 
1 7.00   1 10.0 
Rs  R1  R2  R3  4.00  4.12 9.00  17.1 
(b)
V  IR
FIG. P28.6
34.0 V  I 17.1 
I 1.99 A
for 4.00  , 9.00  resistors.
Applying V  IR ,
1.99 A  4.12   8.18 V
8.18 V  I 7.00 
so
I 1.17 A
for 7.00  resistor
8.18 V  I 10.0 
so
I 0.818 A
for 10.0  resistor.
P28.9
If we turn the given diagram on its side, we find that it is the same as
figure (a). The 20.0  and 5.00  resistors are in series, so the
first reduction is shown in (b). In addition, since the 10.0  ,
5.00  , and 25.0  resistors are then in parallel, we can solve
for their equivalent resistance as:
Req 

1
1
10.0 
 5.001   25.10 

 2.94 
.
This is shown in figure (c), which in turn reduces to the circuit shown in
figure (d).
Next, we work backwards through the diagrams applying
I
V
R
and
V  IR alternately to every resistor, real and equivalent. The
12.94  resistor is connected across 25.0 V, so the current
through the battery in every diagram is
I
V
25.0 V

 1.93 A
R
12.94 
.
In figure (c), this 1.93 A goes through the 2.94  equivalent resistor to
give a potential difference of:
V  IR   1.93 A  2.94   5.68 V
.
From figure (b), we see that this potential difference is the same across
V ab , the 10  resistor, and the 5.00  resistor.
Vab  5.68 V
(b)
Therefore,
.
(a)
Since the current through the 20.0  resistor is also the current through
the 25.0  line ab,
I
V ab 5.68 V

 0.227 A  227 m A
R ab
25.0 
.
FIG. P28.9
P28.15
1 
 1
Rp  

 3.00 1.00
1
 0.750 
R s   2.00  0.750  4.00   6.75 
Ibattery 
V 18.0 V

 2.67 A
R s 6.75 
P2   2.67 A   2.00 
2
P  I2R :
P2  14.2 W
P4   2.67 A 
in 2.00 
 4.00 A   28.4 W
V 2   2.67 A  2.00   5.33 V ,
V 4   2.67 A  4.00   10.67 V
2
in 4.00 
V p  18.0 V  V 2  V 4  2.00 V   V 3  V1 
P3 
P1 
P28.20
 V 3 
R3
2

 2.00 V  2
3.00 
 V1    2.00 V  2 
R1
1.00 
 1.33 W
4.00 W
FIG. P28.15
in 3.00 
in 1.00 
15.0   7.00 I1   2.00 5.00  0
5.00  7.00I1
so
I1  0.714 A
I3  I1  I2  2.00 A
0.714  I2  2.00
FIG. P28.20
so
   2.00 1.29  5.00 2.00  0
I2  1.29 A
  12.6 V
P28.21
We name currents I1 , I2 , and I3 as shown.
From Kirchhoff’s current rule, I3  I1  I2 .
Applying Kirchhoff’s voltage rule to the loop containing I2 and I3 ,
12.0 V   4.00 I3   6.00 I2  4.00 V  0
FIG. P28.21
8.00   4.00 I3   6.00 I2
Applying Kirchhoff’s voltage rule to the loop containing I1 and I2 ,
  6.00 I2  4.00 V   8.00 I1  0
 8.00 I1  4.00   6.00 I2 .
Solving the above linear system, we proceed to the pair of simultaneous
equations:
8  4I1  4I2  6I2

8I1  4  6I2
or
8  4I1  10I2

I2  1.33I1  0.667
and to the single equation 8  4I1  13.3I1  6.67
I1 
14.7 V
 0.846 A . Then
17.3 
I2  1.33 0.846 A   0.667
and
I3  I1  I2
give I1  846 m A ,I2  462 m A ,I3  1.31 A .
All currents are in the directions indicated by the arrows in the circuit diagram.
P28.23
We use the results of Problem 28.21.
(a)
By the 4.00-V battery:
U   V  It  4.00 V  0.462 A  120 s  222 J .
By the 12.0-V battery:
12.0 V 1.31 A  120 s
1.88 kJ .
(b)
(c)
By the 8.00- resistor:
I2R t  0.846 A   8.00  120 s  687 J .
By the 5.00- resistor:
 0.462 A  2  5.00  120 s 
128 J .
By the 1.00- resistor:
 0.462 A  2 1.00  120 s 
25.6 J .
By the 3.00- resistor:
1.31 A  2  3.00  120 s 
616 J .
By the 1.00- resistor:
1.31 A  2 1.00  120 s 
205 J .
2
222 J 1.88 kJ 1.66 kJ from chemical to electrical.
687 J 128 J 25.6 J 616 J 205 J 1.66 kJ from electrical to internal.
P28.32
(a)
I t  I0etRC
I0 
Q
5.10  106 C

 1.96 A
RC 1300  2.00  109 F




9.00  106 s
  61.6 m A
I t    1.96 A  exp 
 1300  2.00  109 F 




(b)


8.00  106 s
  0.235 C
q t  Q etRC   5.10 C  exp 
  1 300  2.00  109 F 


(c)
The magnitude of the maximum current is I0  1.96 A .


P28.39



et RC 
12.0
et 12.0 s
4.00  106
(a)
  RC  4.00  106  3.00  106 F  12.0 s
(b)
I

R
FIG. P28.39
q  C  1 et RC   3.00  106  12.0 1 et 12.0 
q  36.0 C 1 et 12.0 
P28.41


V  Igrg  I Ig R p
Rp 
, or
I 3.00 A et 12.0
Igrg
 I I 
g

Ig  60.0 
 I I 
g
I  0.500 m A
Therefore, to have I 0.100 A  100 m A when g
:
FIG. P28.41
Rp 
 0.500 m A  60.0 
99.5 m A
 0.302 
.
Related documents