Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1 1) Answer the following questions with one or two short sentences. a) What is a type I error and how can you reduce its probability of occurrence? (2 marks) Type I error is the probability of rejecting a null hypothesis that is true You can reduce its probability by choosing a smaller α-value (so for example choose α = 0.01 instead of the usual 0.05) b) You carry out a 1-sample t-test with a 2-sided alternative hypothesis. The sample size was n = 21 and you calculate the t-statistic and find that t = 3.64. State whether or not you reject Ho, indicating why you do, or don’t reject it (2 marks) degrees of freedom, DF = n-1 = 20. The critical t-value = 2.09. I reject Ho 1 because the calculated t=3.64 is greater than tcrit =2.09. c) What term best describes the shape of distribution shown below? (1 mark) Skewed to the right (or positively skewed) 2 2. Given a normally distributed population with mean μ = 6 cm and σ2 = 9, what is the probability of randomly sampling an individual having a length x < 12 cm ? (2 marks) Here μ = 6, σ2 = 9, so σ = 3 , z = (x - μ)/ σ Pr[x < 12 ] = Pr [z < (12-6)/3] or Pr[z < 2].(see sketch below). I can’t directly get the shaded area from normal dist tables but I can get the unshaded and subtract from 1. So Pr[x<12] = 1 – Pr[z>2] = 1 – 0.02275. So the Pr [x < 12 ] = 0.97725 3. Given a normally distributed population with a mean length μ = 7 cm and σ = 2, what is the probability of randomly sampling an individual that falls into the range 4 < x < 8 ? (3 marks) z = (x - μ)/ σ. So here I’ll need to get the unshaded areas and then subtract them from 1. Pr[x>8] = Pr[z>(8-7)/2] = 0.30854 Pr[x<4] = Pr[z<(4-7)/2] = Pr[z<-1.5] which is the same as Pr[z>+1.5] = 0.06681 So prob x is in the specified range is Pr[4 < x < 8] = 1 - 0.30854 - 0.06681 = 0.62465 4. Given a normally distributed population with μ = 6 and σ = 4, what is the probability of obtaining a random sample of n = 16 individuals with a mean x̄ > 4? (3 marks) σ x̄ = σ/√𝑛, so σ x̄ = 4/ √16, σ x̄ = 1.0 and z = (x̄ - μ)/σ x̄ I can’t directly get the desired shaded area (see below), but I can get the unshaded and subtract from 1. So 1 – Pr[x<4] is given by 1 – Pr[z< (4-6)/1] or 1 – Pr[z<-2]. By symmetry, this is the same as 1 – Pr[z>+2] = 1 – 0.02275 So prob of obtaining a mean greater than x̄ >4 is 0.97725 3 5) Snails of the species Amphidromus martensi show variation in the direction of coiling of their shells with some snails having clockwise, and others anti-clockwise coiling. You randomly sample a population to test whether the two snail shell types are equally frequent. Your sample has 2 clockwise and 10 anti-clockwise snails. (5 marks) Conduct the most appropriate statistical test. Ho: proportion clockwise, p = 0.5. (or they can say proportion are equal, etc). Conduct a statistical test of the hypothesis using the spaces provide below Ha: p ≠ 0.5 Include calculations in here. Estimated proportion of clockwise is 𝑝̂ =2/12 =0.167. So I’ve got fewer clockwise than extected so I’ll do a binomial test and compute the probability of x=2 clockwise, x=1 clockwise and x=0 clockwise using p = 0.5 and n=12 . Pr (x) = n!/(x!(n-x)!) px (1-p)n-x Pr (x=0) = 12!/(0!12!) .50 .512 = 0.000244 Pr (x=1) = 12!/(1!11!) .51 .511 = 0.00293 Pr (x=2) = 12!/(2!10!) .52 .510 = 0.016113 Sum = 0.019287 To get P-value sum and multiply by two since it is two sided P-value = 0.038574219. Decision made about the null hypothesis and a short (1 sentence) statement of conclusions. Reject Ho because P-value =0.039 is less than 0.05. The snail types are not equally frequent, and there are too few clockwise (𝑝̂ =0.167). 4 6) You attend a very boring lecture on fruitfly genetics. Instead of listening to the lecture, you try to determine whether the numbers of fruitflies squashed on 12 x 12 inch floor tiles are randomly distributed. You randomly sample and count the number of tiles with various numbers of squashed flies on them (7 marks) Results: 55 tiles had 0 flies; 40 tiles had 1 fly; 5 tiles had 2 flies Use the most appropriate hypothesis test to address this question. Ho: flies are randomly distributed on floor tiles Ha: flies are not randomly distributed on floor tiles Conduct a statistical test of the hypothesis using the spaces provide below Include calculations in here: to goodness of fit to Poisson distribution. Pr (x) = e-μ μx /x!, we must estimate the mean, x̄ , and the standard deviation, s. n = 100 tiles x̄ = (0 x 55+1 x 40 + 2 x 5)/100, x̄ = 0.5 texts per student ∑ 𝑥 2 = (02 x 55+12 x 40 + 22 x 5) = 60 So s2 = ( 60 – 502/100) /99, or s2 = 0.354 Now calculate probabilities of various outcomes using the Poisson distribution Pr (0) = e-.5 .50 /0! = 0.6065 Pr (1) = e-.5 .51 /1! = 0.3033 Pr (2) = e-.5 .52 /2! = 0.0902 – get last by subtraction here or in expect Num table. multiply each by n = 100 to convert to expected numbers and get last one by subtraction: Obs num Expect num 0 flys 55 60.65 1 40 30.33 2 5 9.02 X2calc = ∑(obs-exp)2 /exp = (55-60.65) 2/60.65 + … + (5-9.02) 2/9.02 X2calc = 5.40 df = 3-1-1 =1 critical value of with 1 degrees of freedom, χ12 = 3.84 Decision made about the null hypothesis and a short (1 sentence) statement of conclusions. Reject null hypothesis since calculated X2calc = 5.40 is greater than the critical value χ12 = 3.84 The flys are not randomly distributed and because the variance s2 = 0.354 is less than the mean, x̄ = 0.5, indicates that the data are more uniformly distributed. 5 7) Males of the common side-blotched lizard (Uta stansburiana) differ in having throats that come in one of three colours (blue, orange or yellow). Test the hypothesis that the expected proportion of colour forms from a particular cross is: 0.6 blue : 0.3 orange : 0.1 yellow A random sample of progeny from the cross gives the following observed numbers of lizards: 80 blue, 45 orange, 25 yellow Conduct the most appropriate hypothesis test. (5 marks) Ho: lizard colours are .6 blue : .3 orange : .1 yellow Ha: colours don’t follow these proportions .6 blue : .3 orange : .1 yellow Include calculations in here observed expect blue 80 0.6 x 150 = 90 orange 45 0.3x150 = 45 yellow 25 0.1x150= 15 Total n = 150 X2calc = (80-90)2/90+(45-45)2/45 +(25-25)2/15 X2calc = 7.78 df = 3 categories – 1 = 2 critical value of χ22 = 5.99 Decision made about the null hypothesis and a short (1 sentence) statement of conclusions. Since X2calc = 7.78 is greater than χ22 = 5.99, reject the null hypothesis. The lizard deviate from the predicted colour proportions and there are too many yellow and not enough blue 6 8) Ants often protect plants from herbivorous insects. You test whether 3 species of ants (ant species1, ant species2, ant species3) differ in their ability to protect acacia shrubs. You randomly sample and count acacias, determining which one of three ant species they have on them, and whether or not the acacias have been damaged by insects. Your counts of the numbers of damaged or undamaged acacias having different ant species are tabulated below. Conduct the most appropriate statistical test (5 marks) Insect Number of Damaged Acacias with ant species1 Yes 20 No 30 totals 50 Number of Acacias with ant species2 30 70 100 Number of Acacias with ant species3 40 10 50 totals 90 110 200 Ho: Damage on Acacia is independent of the ant species on them Ha: Damage on Acacia is depends on the ant species on them Include calculations in here Expected table Insect Number of Number of Damaged Acacias with Acacias with ant species1 ant species2 Yes =50x90/200 =100x90/200 =22.5 =45 No =50x110/200 =100x110/200 =27.5 =55 Number of Acacias with ant species3 =50x90/200 =22.5 =50x110/200 =27.5 X2calc = ∑(obs-exp)2 /exp = (20-22.5) 2/22.5 + … + (10-27.5) 2/27.5 X2calc =34.3 df = (nrows-1)(ncols-1) = (3-1)(2-1) df = 2 critical with 2 degrees of freedom, χ22 = 5.99 Decision made about the null hypothesis and a short (1 sentence) statement of conclusions. Since X2calc is greater than the critical value, we reject the null hypothesis. There is an association between damage and ant species with ant species3 giving very poor protection as expect only 22.5 to be damaged but observe 40 (the other two ant species both show fewer damaged than expected. 7 9) Write all the SAS programming statements necessary to carry out a goodness of fit test where the expected proportions of various flower colours in a population of poppies is: expected proportions: 0.1 red; 0.2 purple; 0.3 yellow; 0.4 black. (5 marks). You actually observe the following numbers: 25 red; 35 purple; 40 yellow; 20 black. DATA FLOWERS; INPUT COLOUR $ NUMBER; CARDS; (OR DATALINES;) red 25 purple 35 yellow 40 black 20 ; PROC FREQ ORDER=DATA; WEIGHT NUMBER; TABLES COLOUR/CHISQ NOCUM TESTP=(0.1 0.2 0.3 0.4); RUN; ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 8 2 ᵡ Distribution _________________________________α___________________________________ 0.999 0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005 0.001 df _____________________________________________________________________ 1 0.00001 0.0001 0.0002 0.001 0.004 3.84 5.02 6.63 7.88 10.83 2 0.002 0.01 0.02 0.05 0.10 5.99 7.38 9.21 10.6 13.82 3 0.02 0.07 0.11 0.22 0.35 7.81 9.35 11.34 12.84 16.27 4 0.09 0.21 0.30 0.48 0.71 9.49 11.14 13.28 14.86 18.47 5 0.21 0.41 0.55 0.83 1.15 11.07 12.83 15.09 16.75 20.52 6 0.38 0.68 0.87 1.24 1.64 12.59 14.45 16.81 18.55 22.46 7 0.60 0.99 1.24 1.69 2.17 14.07 16.01 18.48 20.28 24.32 8 0.86 1.34 1.65 2.18 2.73 15.51 17.53 20.09 21.95 26.12 9 1.15 1.73 2.09 2.70 3.33 16.92 19.02 21.67 23.59 27.88 10 1.48 2.16 2.56 3.25 3.94 18.31 20.48 23.21 25.19 29.59 11 1.83 2.60 3.05 3.82 4.57 19.68 21.92 24.72 26.76 31.26 12 2.21 3.07 3.57 4.40 5.23 21.03 23.34 26.22 28.30 32.91 13 2.62 3.57 4.11 5.01 5.89 22.36 24.74 27.69 29.82 34.53 14 3.04 4.07 4.66 5.63 6.57 23.68 26.12 29.14 31.32 36.12 15 3.48 4.60 5.23 6.26 7.26 25.00 27.49 30.58 32.80 37.70 Student’s t-distribution α(2) α(1) df 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 0.2 0.1 0.10 0.05 0.05 0.02 0.01 0.001 0.0001 0.025 0.01 0.005 0.0005 0.00005 1.89 1.64 1.53 1.48 1.44 1.41 1.40 1.38 1.37 1.36 1.36 1.35 1.35 1.34 1.34 1.33 1.33 1.33 1.33 1.32 1.32 1.32 1.32 1.32 1.31 1.31 1.31 1.31 1.31 2.92 2.35 2.13 2.02 1.94 1.89 1.86 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.75 1.74 1.73 1.73 1.72 1.72 1.72 1.71 1.71 1.71 1.71 1.70 1.70 1.70 1.70 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23 2.20 2.18 2.16 2.14 2.13 2.12 2.11 2.10 2.09 2.09 2.08 2.07 2.07 2.06 2.06 2.06 2.05 2.05 2.05 2.04 6.96 4.54 3.75 3.36 3.14 3.00 2.90 2.82 2.76 2.72 2.68 2.65 2.62 2.60 2.58 2.57 2.55 2.54 2.53 2.52 2.51 2.50 2.49 2.49 2.48 2.47 2.47 2.46 2.46 9.92 31.60 5.84 12.92 4.60 8.61 4.03 6.87 3.71 5.96 3.50 5.41 3.36 5.04 3.25 4.78 3.17 4.59 3.11 4.44 3.05 4.32 3.01 4.22 2.98 4.14 2.95 4.07 2.92 4.01 2.90 3.97 2.88 3.92 2.86 3.88 2.85 3.85 2.83 3.82 2.82 3.79 2.81 3.77 2.80 3.75 2.79 3.73 2.78 3.71 2.77 3.69 2.76 3.67 2.76 3.66 2.75 3.65 99.99 28.00 15.54 11.18 9.08 7.88 7.12 6.59 6.21 5.92 5.69 5.51 5.36 5.24 5.13 5.04 4.97 4.90 4.84 4.78 4.74 4.69 4.65 4.62 4.59 4.56 4.53 4.51 4.48 9 Standard Normal (Z) Distribution ____________________________________________________________________________________________________________________ 0 1 2 3 4 5 6 7 8 9 1st 2 2nd digit after decimal digits______________________________________________________________________________________________________________________________ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 0.50000 0.46027 0.42074 0.38209 0.34458 0.30854 0.27425 0.24196 0.21186 0.18406 0.15866 0.13567 0.11507 0.09680 0.08076 0.06681 0.05480 0.04457 0.03593 0.02872 0.02275 0.01786 0.01390 0.01072 0.00820 0.00621 0.00466 0.00347 0.00256 0.00187 0.00135 0.00097 0.00069 0.00048 0.00034 0.00023 0.00016 0.00011 0.00007 0.00005 0.00003 0.49601 0.45620 0.41683 0.37828 0.34090 0.30503 0.27093 0.23885 0.20897 0.18141 0.15625 0.13350 0.11314 0.09510 0.07927 0.06552 0.05370 0.04363 0.03515 0.02807 0.02222 0.01743 0.01355 0.01044 0.00798 0.00604 0.00453 0.00336 0.00248 0.00181 0.00131 0.00094 0.00066 0.00047 0.00032 0.00022 0.00015 0.00010 0.00007 0.00005 0.00003 0.49202 0.45224 0.41294 0.37448 0.33724 0.30153 0.26763 0.23576 0.20611 0.17879 0.15386 0.13136 0.11123 0.09342 0.07780 0.06426 0.05262 0.04272 0.03438 0.02743 0.02169 0.01700 0.01321 O.D1017 0.00776 0.00587 0.00440 0.00326 0.00240 0.00175 0.00126 0.00090 0.00064 0.00045 0.00031 0.00022 0.00015 0.00010 0.00007 0.00004 0.00003 0.48803 0.44828 0.40905 0.37070 0.33360 0.29806 0.26435 0.23270 0.20327 0.17619 0.15151 0.12924 0.10935 0.09176 0.07636 0.06301 0.05155 0.04182 0.03362 0.02680 0.02118 0.01659 0.01287 0.00990 0.00755 0.00570 0.00427 0.00317 0.00233 0.00169 0.00122 0.00087 0.00062 0.00043 0.00030 0.00021 0.00014 0.00010 0.00006 0.00004 0.00003 0.48405 0.44433 0.40517 0.36693 0.32997 0.29460 0.26109 0.22965 0.20045 0.17361 0.14917 0.12714 0.10749 0.09012 0.07493 0.06178 0.05050 0.04093 0.03288 0.02619 0.02068 0.01618 0.01255 0.00964 0.00734 0.00554 0.00415 0.00307 0.00226 0.00164 0.00118 0.00084 0.00060 0.00042 0.00029 0.00020 0.00014 0.00009 0.00006 0.00004 0.00003 0.48006 0.44038 0.40129 0.36317 0.32636 0.29116 0.25785 0.22663 0.19766 0.17106 0.14686 0.12507 0.10565 0.08851 0.07353 0.06057 0.04947 0.04006 0.03216 0.02559 0.02018 0.01578 0.01222 0.00939 0.00714 0.00539 0.00402 0.00298 0.00219 0.00159 0.00114 0.00082 0.00058 0.00040 0.00028 0.00019 0.00013 0.00009 0.00006 0.00004 0.00003 0.47608 0.43644 0.39743 0.35942 0.32276 0.28774 0.25463 0.22363 0.19489 0.16853 0.14457 0.12302 0.10383 0.08691 0.07215 0.05938 0.04846 0.03920 0.03144 0.02500 0.01970 0.01539 0.01191 0.00914 0.00695 0.00523 0.00391 0.00289 0.00212 0.00154 0.00111 0.00079 0.00056 0.00039 0.00027 0.00019 0.00013 0.00008 0.00006 0.00004 0.00002 0.47210 0.43251 0.39358 0.35569 0.31918 0.28434 0.25143 0.22065 0.19215 0.16602 0.14231 0.12100 0.10204 0.08534 0.07078 0.05821 0.04746 0.03836 0.03074 0.02442 0.01923 0.01500 0.01160 0.00889 0.00676 0.00508 0.00379 0.00280 0.00205 0.00149 0.00107 0.00076 0.00054 0.00038 0.00026 0.00018 0.00012 0.00008 0.00005 0.00004 0.00002 0.46812 0.42858 0.38974 0.35197 0.31561 0.28096 0.24825 0.21770 0.18943 0.16354 0.14007 0.11900 0.10027 0.08379 0.06944 0.05705 0.04648 0.03754 0.03005 0.02385 0.01876 0.01463 0.01130 0.00866 0.00657 0.00494 0.00368 0.00272 0.00199 0.00144 0.00104 0.00074 0.00052 0.00036 0.00025 0.00017 0.00012 0.00008 0.00005 0.00003 0.00002 0.46414 0.42465 0.38591 0.34827 0.31207 0.27760 0.24510 0.21476 0.18673 0.16109 0.13786 0.11702 0.09853 0.08226 0.06811 0.05592 0.04551 0.03673 0.02938 0.02330 0.01831 0.01426 0.01101 0.00842 0.00639 0.00480 0.00357 0.00264 0.00193 0.00139 0.00100 0.00071 0.00050 0.00035 0.00024 0.00017 0.00011 0.00008 0.00005 0.00003 0.00002