Download MS Word - Invasive.Org

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Fire ecology wikipedia , lookup

Cucurbita wikipedia , lookup

Molecular ecology wikipedia , lookup

Biodiversity action plan wikipedia , lookup

Gartons Agricultural Plant Breeders wikipedia , lookup

Bifrenaria wikipedia , lookup

Ecology of Banksia wikipedia , lookup

Habitat conservation wikipedia , lookup

Biological Dynamics of Forest Fragments Project wikipedia , lookup

Island restoration wikipedia , lookup

Operation Wallacea wikipedia , lookup

Introduced species wikipedia , lookup

Habitat wikipedia , lookup

Weed control wikipedia , lookup

Transcript
ELEMENT STEWARDSHIP ABSTRACT
for
Potentilla recta L.
Sulfur cinquefoil
To the User:
Element Stewardship Abstracts (ESAs) are prepared to provide staff of The Nature Conservancy and
other land managers with current management related information on species and communities that are
most important to protect or control. The abstracts organize and summarize data from many sources
including literature and from researchers and managers actively working with the species or community.
We hope, by providing this abstract free of charge, to encourage users to contribute their information to
the abstract. This sharing of information will benefit all land managers by ensuring the availability of an
abstract that contains up-to-date information on management techniques and knowledgeable contacts.
Contributors of information will be acknowledged within the abstract.
The abstracts are stored on computer at The Nature Conservancy’s Wildland Invasive Species Team.
Anyone with comments, questions, or information on current or past monitoring, research, or
management programs for the species described in this abstract is encouraged to contact The Nature
Conservancy’s Wildland Invasive Species Team.
This abstract is a compilation of available information and is not an endorsement of particular practices or
products.
Please do not remove this cover statement from the attached abstract.
Authors of this Abstract:
Bryan A. Endress, Department of Forest Science, Oregon State University, Corvallis, OR 97331.
E-mail: [email protected]
Catherine G. Parks, U.S. Forest Service, Pacific Northwest Research Station, La Grande, OR, 97850.
Email: [email protected]
Written: May 2004
THE NATURE CONSERVANCY
4245 North Fairfax Drive, Arlington, Virginia 22203-1606 (703) 841-5300
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
SCIENTIFIC NAME
Potentilla recta L.
The genus name “Potentilla” comes from the Latin diminutive of potens meaning "powerful" in reference
to the medicinal properties of some species. The species epithet “recta” means straight, upright, erect.
SYNONYMS
Potentilla sulphurea Lam., Potentilla recta L. var obscura (Nestler) W.D.J. Koch., Potentilla recta L. var
pilosa (Willd.) Ledb., Potentilla recta L. var sulphurea (Lam. & DC.) Peyr. (USDA, NRCS 1999,
TROPICOS 2001).
COMMON NAMES
Sulfur cinquefoil is the most commonly used name for P. recta, though it is also referred to as ‘roughfruited cinquefoil’ or ‘erect cinquefoil.’ In the past, it has been called ‘upright cinquefoil’ (Fernald 1950).
The common names ‘five-finger’ and ‘cinquefoil’ are frequently used for the genus Potentilla.
DESCRIPTION AND DIAGNOSTIC CHARACTERISTICS
Potentilla recta is a perennial herb of the rose family (Rosaceae). Potentilla recta has a woody base with
1-8 stems, reaching 30-70 cm in height. Stems have few, if any branches. Leaves are alternate, palmately
compound with 5-9 leaflets per leaf. Leaflets are serrate, oblong and 3-14 cm long (Werner and Soule
1976). The entire above-ground portion of the plant is covered with shiny, erect hairs that emerge at right
angles from the plant. Plants have been reported to live up to 20-30 years in Michigan (Rice 1991) and
10 years in Oregon (Dana Perkins, pers. comm.). The plant has a single taproot, and may have several
shallow, spreading branch roots, but no rhizomes. Flowers typically appear from late May to mid July in
Oregon, and occur in cymes with 1-60 flowers per inflorescence (Endress, unpublished data). Flowers
have 5 pale-yellow petals that are notched at the tip and are 1.5-2.5 cm in length (Rice 1999).
Reproduction is only by seed. The seeds are dark brown comma-shaped achenes, 1-2 mm long with a netlike pattern of veins on the surface. Potentilla recta is often confused with native cinquefoils that are
found in the Pacific Northwest, but can be easily distinguished by its 3 unique characteristics: 1) long,
right angled hairs perpendicular to the leafstalks and stem, 2) numerous stem leaves but few basal leaves,
and 3) a net-like pattern on its seed coat.
STEWARDSHIP SUMMARY
Potentilla recta, an herbaceous forb native to Eurasia, is well established throughout much of the United
States and Canada, and is found in a wide range of natural and agricultural habitats. It is particularly
problematic in the drier climates of the Pacific and inland Northwest where it invades grassland and openforest communities and displaces native vegetation. Of particular concern is the impact of P. recta on
native Potentilla species in the Pacific Northwest. A single plant can produce thousands of seeds annually
which allows for its rapid spread.
Hand-digging may effectively control small infestations. There are no approved biological controls for P.
recta. In large infestations, selective herbicides applied at recommended label rates are likely the only
method of effective control. Picloram applied in the spring or fall provides effective control and offers
multi-year residual activity. 2,4-D ester is suggested where water resources are an issue. No direct data
are available on how long seeds remain viable in soil, but seedling re-establishment from the soil seed
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
bank is likely, and thus repeated applications may be necessary. After control efforts, restoration activities
that promote native vegetation reestablishment are likely the best approach for long-term control.
RANGE & HABITATS
Potentilla recta is native to Eurasia and is found in central and southern Europe, the mountainous regions
of North Africa, and western and central Asia, where it is found in grass- or shrub- dominated
communities, pine-forest clearings, and forest boarders (Schaffner and Tosevski 1994). It was introduced
to North America before 1900. By the 1950’s P. recta was well established in Canada, and the
northeastern and upper Midwest of the United States (Rice 1999). The first known report of P. recta in
western North America was on Vancouver Island in 1914 (Zouhar 2003). It has since spread throughout
the continent, and has been reported in all states of the continental US, except for Arizona, Utah and New
Mexico (USDA, NRCS 1999). The ten southernmost Canadian provinces have also documented the
establishment of sulfur cinquefoil.
Potentilla recta is adapted to a wide range of environmental conditions and is able to establish in a variety
of ecosystems. In eastern North America, P. recta is generally found along roadsides, rights-of-way,
disturbed areas, and old fields, while in western North America, it has also invaded native forest, shrub
and grassland plant communities. While P. recta is predominantly found in open-areas, such as in eastern
Minnesota prairie sites (Bradley et al. 2003), it has also been observed under dense canopy cover
(Endress, unpublished data). Potentilla recta does not seem to be limited by soil texture, but tends to
form the largest infestations on coarse-textured soils, on drier sites at low and mid elevations, and on
moderately moist sites at low elevations (Rice 1991). Dense infestations have also been found on sandy,
gravelly, rocky, and clay soils (Rice et al. 1991, Werner and Soule 1976). In the Pacific Northwest and
British Columbia, P. recta occurs in areas with 13-50 inches of mean annual precipitation. Potentilla
recta generally does not occur in the Great Basin, desert Southwest, southern Rockies, or Rocky
Mountain Piedmont. It is most problematic in Montana, Idaho, and eastern Washington and Oregon.
No systematic inventory exists that allows for a comprehensive understanding of which habitats are most
susceptible to P. recta invasion. However, Zouhar (2003) provides lists of potentially susceptible
ecosystems, physiographic regions, habitats, and plant associations. Because of P. recta’s wide latitude in
ecological requirements, however, these lists are considerable and include deciduous and coniferous
forests, sagebrush, grassland, pinyon-juniper, and savanna biomes, among others. In Montana alone, Rice
(1993) found infestations in 14 plant communities ranging from forest to grassland communities. In
addition, P. recta commonly co-occurs with native Potentilla spp. including P. arguta, P. glandulosa, P.
gracilis and others (Rice 1993).
Potentilla recta can be very competitive displacing both native and non-native plants. In Oregon,
Montana, and Idaho it invades bluebunch wheatgrass rangeland, and has also been reported to replace
spotted knapweed on some sites in Montana (Rice 1991). In Northeastern Oregon, P. recta densities vary
from 1 stem/m2 in ponderosa pine stands (75% canopy cover) to over 150 stems/m2 in degraded meadows
(Endress, unpublished data). In Michigan a maximum density of 39 stems/m2 was reported (Werner and
Soule 1976).
IMPACTS AND THREATS POSED BY POTENTILLA RECTA
Potentilla recta can invade and dominate a variety of vegetation types. Roadsides, waste places,
abandoned agriculture fields, clear cuts, and other disturbed sites are particularly susceptible to invasion
by P. recta; however, low-disturbance sites, including native grassland, shrubland, and forest
communities can also be invaded by P. recta. It can pose a serious management threat in many natural
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
areas due to its prolific seed production. When plant communities become thoroughly infested by P.
recta, native plant diversity often decreases and natural successional processes may become altered. Of
particular concern is the risk that P. recta may pose to the abundance and reproductive success of the
many native cinquefoils that frequently co-occur with P. recta in the interior Pacific Northwest. Studies
have been initiated to determine if hybridization between P. recta and native Potentilla species occurs
(Cronn, pers. comm.). In Europe P. recta is known to hybridize with P. hirta under natural conditions
(Goswami and Acharya 1975). Investigations of the insect pollinator communities shared by P. recta and
co-occurring native Potentilla spp. are ongoing (McIver, pers. comm.). Potentilla recta typically produces
more flowers than co-occurring native Potentilla spp. and may therefore attract more insect pollinators,
causing reduced reproductive success of native Potentilla species. Dry meadows infested with P. recta
located at critical lower elevation winter range, may adversely affect deer and elk populations in
northeastern Oregon due to loss of forage (Parks, unpublished information).
BIOLOGY AND ECOLOGY
Moisture, light and temperature
Potentilla recta can survive in a variety of environmental conditions. Reports suggest that P. recta does
best in semi-arid locations with mean annual precipitation between 333-1270 mm/year (13.1-50.0 inches)
and in areas with a Mediterranean climate (Powell 1996). Potentilla recta also seems to inhabit both
slightly mesic and xeric sites. In the eastern U.S., P. recta is found in dry soil (Gleason and Cronquist
1991) and is reported to spread rapidly on xeric sites in Montana (Lesica 2002), while in Nevada it only
occurs on wet or damp soil around lakes, ponds, and streams (Kartesz 1988).
Soil texture and soil pH
Little information exists on the importance of soil texture and soil pH on P. recta, though its wide
distribution across North America suggests that it can tolerate a range of soil conditions. It has been
found to colonize areas with sandy, gravelly, rocky, limey and clay soils (Rice et al. 1991, Werner and
Soule 1976).
Reproduction & seed viability
Potentilla recta only reproduces through the production of seeds. There is no vegetative mode of
reproduction. Flower and seed production appears to be greater in western North America than eastern
North America. In Michigan, seed production for P. recta adults averaged 1650 seeds/plant, while in
Northeastern Oregon seed production averaged 5350-5600 seeds/plant between 2001 and 2002 (Dwire et
al. 2003). On a grassland site in northwestern Montana, the proportion of sulfur cinquefoil plants
producing fruit ranged from 3 to 86% and was highest during years with highest precipitation (Lesica and
Martin, 2003)
Seed dispersal occurs from late summer through fall. Seeds are wind-dispersed and travel an average
0.27m from the parent plant (Dwire et al. 2003). Long-distance dispersal via animals (in fur, hooves,
etc.), people (seed heads readily attach to fleece, jeans, and boots), and vehicles is also likely. In
northeastern Oregon, cattle, deer, and elk have been observed consuming mature seedheads which may
also facilitate the long distance dispersal of P. recta (Parks and Endress, pers. obs.). Seeds may also be
carried in melting snow and surface flows.
Seeds appear to be persistent in the seedbank, though no research has been conducted to demonstrate this.
Percent germination of P. recta seeds did not decrease with more than 2 years of burial (Baskin and
Baskin 1990), and Rice et al. (1991) suggested that seeds remain viable in the soil for more than 4 years.
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
ECONOMIC USES
There are no reported uses for P. recta beyond use as an ornamental plant for gardens. Potentilla recta is
not good forage due to its high tannin content (Werner and Soule 1976). It has been reported as
unpalatable to most livestock and wildlife (Rice 1991, Rice et al. 1991, Werner and Soule 1976), though
cattle, elk, and deer have been observed browsing P. recta in Oregon (C. Parks, and B. Endress, pers.
obs.).
MANAGEMENT
Potential for Restoration of Invaded Sites
As with all prolific invaders, prevention, early detection, and rapid action are the keys to the successful
control of P. recta. Because abundant seeds reside in the soil surface of P. recta infested sites, careful
cleaning of soil from equipment before moving it from infested to uninfested areas may prevent new
infestations. Early detection of new colonies and an aggressive manual, mechanical or chemical control
program may eradicate new colonies. No biological control methods are available and thorough
integrated weed management techniques have not yet been developed to manage large infestations of P.
recta. Combinations of prescribed fire, herbicides, and seeding of native grass species are being
evaluated as management tools (Parks and Endress, unpublished information).
Manual and Mechanical Control
Hand digging may eradicate small infestations if care is made to completely remove root crowns.
Populations must be monitored for several years following plant removal because seeds stored in the soil
seed bank may germinate. Mowing is not an effective control method. In agricultural settings, tilling of
the soil followed by seeding with more desired vegetation is likely an effective method for P. recta
control, though this approach is impractical for P. recta control in most natural areas.
Grazing
Improper cattle grazing of P. recta infested areas may accelerate the dominance of P. recta, if grasses and
forbs are selectively removed by grazing. Studies to determine the influence of grazing on P. recta are
needed. Potentilla recta is utilized in intensively grazed situations but can still flower and produce seeds
even when heavily grazed (Parks, unpublished information). Goats are reported to select for P. recta
(Rice 1999) Wild ungulates have been observed to browse P. recta, though this effect on P. recta
demography is unknown. Potentilla recta is generally thought to be avoided by most grazing animals
(Rice 1999); however 63% of P. recta stems in a degraded meadow in northeastern Oregon showed
evidence of ungulate browsing in 2003 (Parks and Endress, unpublished data). Ingestion of seed heads, or
attachment of seeds to the bodies or hooves of animals during grazing of infested sites may lead to
establishment of new P. recta colonies if seeds are deposited in uninfested areas with grazing migration.
Prescribed Burning
Using prescribed fires to control P. recta does not appear to be effective. In an experiment conducted to
determine the effectiveness of prescribed fire, Lesica and Martin (2003) found that fire (spring or fall
burns) increased P. recta recruitment as compared to unburned plots. Preliminary results from a similar
study in northeastern Oregon also suggest that prescribed fire alone will not control P. recta infestations
(Parks, unpublished data). However, integrated approaches incorporating prescribed fire, herbicide
application, and seeding of native seeds may be effective.
Herbicides
Selective herbicides are currently the most effective means to control large infestations of P. recta.
Picloram applied in either spring or fall is reported to provide several years of control, and Rice (1999)
suggests application rates of 0.25 lb ae/acre when applied in the fall or spring up to late bud stage. On dry
land sites picloram used at recommended label rates is preferred because its residual activity will inhibit
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
new plants from establishing from the existing soil seed bank. Where water contamination is a concern
2,4-D ester also provides good control, but without the multi-year residual activity obtained from
picloram.
Biocontrol
There are no available biocontrol agents for P. recta. Due to the plant’s close genetic relationship to
native Potentilla species and to cultivated strawberries, finding a host specific biocontrol agent for P.
recta is difficult. However, screening for host-specific insects and fungi is ongoing (Jim Story, pers.
comm.),
Restoration/Competition
P. recta is a strong competitor and is capable of suppressing native vegetation. If P. recta populations are
reduced (i.e., by herbicide, hand-digging), native plants are usually able to rapidly recolonize sites if
sufficient native seed is still viable in the soil. Seeding of native species under adequate environmental
conditions, reducing grazing pressure, and continued spot herbicide re-treatments, will result in a more
rapid and stable restored native plant community.
EXAMPLES OF MANAGEMENT PROGRAMS FOR POTENTILLA RECTA
Montana
In 1992, Celestine Duncan conducted an experiment near Bozeman and Missoula, Montana to determine
the optimum P. recta growth stage for applying picloram, metsulfuron, and 2,4-D ester. She found that
picloram (.25 lb/acre) yielded best results 1 year after application with >94% control regardless of the
timing of the application. When using 2,4-D, application during the rosette and bud stages yielded control
rates >90% while application during flowering and fall regrowth periods yielded variable results, ranging
from 35%-90%. Metsulfuron did not control P. recta at the Missoula site, but provided moderate control
(53-79%) at the Bozeman site.
CONTACTS
Celestine Duncan
Weed Management Services
P.O. Box 9055
Helena MT, 59604
406-443-1469
[email protected]
Peter Rice
University of Montana
Missoula, MT 59812
406-243-2671
[email protected]
Catherine G. Parks
Forestry and Range Sciences Lab
USDA Forest Service
1401 Gekeler Lane
La Grande, OR 97850
541-962-6531
[email protected]
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
Michael McInnis
Department of Rangeland Resources
Oregon State University
One University Boulevard
La Grande, OR 97850
541-962-3812
[email protected]
MONITORING
To determine the effectiveness of management treatments, monitoring should optimally occur prior to and
after control efforts. Monitoring should be continued for several years following the treatments to
determine whether the impacts are lasting and if your management actions are having the desired
outcomes. Therefore, monitoring data should be able to assess changes in abundance (percent cover or
density) of P. recta and desirable natives or “guilds” of natives over time.
Following initial control treatments, further control efforts and monitoring must be performed at least
once-a-year for a minimum of 3-5 years, due to the longevity of P. recta of seeds in the seedbank, and the
likelihood of re-invasion from nearby propagule sources.
Other conservation targets may be important indicators of ecosystem health. Monitoring the status of
community attributes such as the growth and survival of restoration plantings, the regeneration of native
plant species, invertebrates, and mammals, is as important as monitoring invasive species populations. In
general, the objectives of monitoring should track those of management.
While usually considered a research technique, measuring change in both “control” (unmanaged) as well
as in the treated areas can be an effective way of assuring that any changes detected in treated areas are
actually the result of management actions and not due to other factors. In communities that are in early
successional stages or which have been recently disturbed, declines in abundance of invasive species may
occur over time without management.
RESEARCH NEEDS
Despite the widespread concern of P. recta invasion, very little is known about several fundamental
issues. The following topics need to be researched:
1.
How long do P. recta seeds remain viable in soil? It is reported that seeds can remain viable in
the soil up to four years (Rice 1999). However, very little evidence supports this, and it is likely
that seeds remain viable for a longer time period. Additional studies are needed to quantify seed
viability as this can greatly alter control, management, and restoration methods.
2. Does P. recta displace native species, and if so, to what extent? Observations suggest that P.
recta displaces native grasses and forbs. However, there have been no studies conducted that
quantitatively demonstrate the impact of P. recta. Therefore, it remains unclear which species are
directly at risk from P. recta invasion, or which plant communities are most greatly affected by P.
recta.
3. What are the elements of a successful integrated management plan for long-term control and site
restoration? Additional work is needed to order to develop integrated management strategies that
successfully control P. recta while promoting invasion-resistant native plant communities. A
considerable amount of work has gone into evaluating short-term methods of P. recta control
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
(chemical, biological, manual). This work needs to be integrated with studies exploring the
establishment and maintenance of native plant species in order to develop long-term management
strategies.
4. What is the relationship between herbivory and P. recta? Since many areas are grazed by
livestock or support native populations of deer and elk, it is important to answer such questions as
whether these animals act as vectors of seed dispersal and design grazing management strategies
that improve the ability of grazed plants to compete with P. recta.
REFERENCES
Baskin, J. M., and Baskin, C. C. 1990. Role of temperature and light in the germination ecology of buried
seeds of Potentilla recta. Annals of Applied Biology. 117: 611-616.
Bradley, K.L., Damschen, E.I., Young, L.M., Kuefler, D., Went, S., Wray, G., Haddad, N.M., Knops,
J.M.H., and Louda, S.M. 2003. Spatial heterogeneity, not visitation bias, dominates variation in
herbivory. Ecology 84: 2214-2221.
Dwire, K.A., C.G. Parks, D. L. Perkins, M.L. McInnis, B.J. Read.2003. Seed production,
dispersal, and age determination of Potentilla recta L., an invasive non-native species in northeast
Oregon. Presentation and abstract in proceedings of the Ecological Society of America, 88th annual
meeting, Savannah Georgia. August 3-8, 2003.
Fernald, M.L. 1950. Gray's Manual of Botany. American Book Company. New York, NY.
Kartesz, J.T. 1988. A flora of Nevada. Reno, NV: University of Nevada. 1729 p. PhD Dissertation.
Kartesz, J.T. 1999. A Synonymized Checklist and Atlas with Biological Attributes for the Vascular Flora
of the United States, Canada, and Greenland. First edition. IN: Kartesz, J.T. and C.A. Meacham.
Synthesis of the North American Flora, Version 1.0. North Carolina Botanical Garden. Chapel Hill, NC.
Goswami, D. A., and B. Mayfield. 1975. Cytogenetic studies in the genus Potentilla L. New Phytologist.
75: 135-146.
Gleason, H.A. and A. Cronquist.1991. Manual of vascular plants of northeastern United States and
adjacent Canada. 2nd ed. New York: New York Botanical Garden. 910 p.
Lesica, Peter. 2002. Demography of Potentilla recta at Dancing Prairie Preserve, Lincoln County,
Montana. Progress Report. Helena, MT: The Nature Conservancy. Unpublished report on file with: U.S.
Department of Agriculture, Forest Service, Rocky Mountain Research Station, Missoula, MT. 6 p.
Lesica, P. and B. Martin. 2003. Effects of prescribed fire and season of burn on recruitment of the
invasive exotic plant, Potentilla recta, in a semiarid grassland. . Restoration Ecology 11: 516-523.
Powell, George W. 1996. Analysis of sulphur cinquefoil in British Columbia. Working Paper 16.
Victoria, BC: British Columbia Ministry of Forests Research Program. 36 p
Rice, P.M. 1991. Sulfur cinquefoil: a new threat to biological diversity. Western Wildlands. 17:2 34-40.
1991.
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu
Rice, P. M.; Lacey, C. A.; Lacey, J. R.; Johnson, R. 1991. Sulfur cinquefoil: Biology, ecology and
management in pasture and rangeland. Extension Bulletin 109. Bozeman, MT: Montana State University,
Extension Service. 9 p. [Pamphlet].
Rice, Peter M. 1993. Distribution and ecology of sulfur cinquefoil in Montana, Idaho and Wyoming.
Final report: Montana Noxious Weed Trust Fund Project. Helena, MT: Montana Department of
Agriculture. 11 p. On file with: U.S. Department of Agriculture, Forest Service, Rocky Mountain
Research Station, Fire Sciences Laboratory, Missoula, MT.
Rice, P.M. 1999. Sulfur cinquefoil. I: Biology and Management of Noxious Rangeland Weeds, editors,
R.L. Sheley and J.K. Petroff, p. 382-387.
Schaffner, U. and I. Tosevski. 1994. Surveys and investigations on potential control agents of sulphur
cinquefoil, Potentilla recta. In: International Institute of Biological Control annual report. Wallingford,
Oxon, UK: International Institute of Biological Control: 36.
TROICOS 2001. The Missouri Botanical Garden’s nomenclatural database
(http://mobot.mobot.org/W#T/Search/vast.html). Missouri botanical Garden, St. Louis. Accessed
October 2003.
USDA, NRCS 1999. The PLANTS database (http://plants.usda.gov/plants). National Plant Data Center,
Baton Rouge, LA 70874-4490.
Werner, P.A. and J.D. Soule 1976. The biology of Canadian Weeds. 18. Potentilla recta L., P. norvegica
L. and P. argenta L. Canadian Journal of Plant Science 56:591-603.
Zouhar, Kris. 2003. Potentilla recta. In: Fire Effects Information System, [Online]. U.S. Department of
Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
Available: http://www.fs.fed.us/database/feis/
Authored By:
Bryan A. Endress, Department of Forest Science, Oregon State University, Corvallis, OR 97331.
E-mail: [email protected]
Catherine G. Parks, U.S. Forest Service, Pacific Northwest Research Station, La Grande, OR, 97850.
Email: [email protected]
Edited By:
Mandy Tu & Barry Rice, The Nature Conservancy’s Wildland Invasive Species Team, Dept of Veg
Crops & Weed Sciences, University of California at Davis, Davis, CA 95616. 530-754-8891
Written: May 2004
The Nature Conservancy’s Wildland Invasive Species Team
http://tncweeds.ucdavis.edu