Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Use of moment generating
functions
1. Using the moment generating functions of
X, Y, Z, …determine the moment
generating function of W = h(X, Y, Z, …).
2. Identify the distribution of W from its
moment generating function
This procedure works well for sums, linear
combinations etc.
Therorem
Let X and Y denote a independent random variables
each having a gamma distribution with parameters
(l,a1) and (l,a2). Then W = X + Y has a gamma
distribution with parameters (l, a1 + a2).
Proof:
a1
 l 
mX  t   

 l t 
a2
 l 
and mY  t   

 l t 
Therefore mX Y  t   mX  t  mY t 
a1
a2
a1 a 2
 l   l 
 l 

 
 

 l t   l t 
 l t 
Recognizing that this is the moment generating
function of the gamma distribution with parameters
(l, a1 + a2) we conclude that W = X + Y has a
gamma distribution with parameters (l, a1 + a2).
Therorem (extension to n RV’s)
Let x1, x2, … , xn denote n independent random
variables each having a gamma distribution with
parameters (l,ai), i = 1, 2, …, n.
Then W = x1 + x2 + … + xn has a gamma distribution
with parameters (l, a1 + a2 +… + an).
Proof:
ai
 l 
mxi  t   

 l t 
i  1, 2..., n
Therefore
mx1  x2 ... xn  t   mx1 t  mx2 t  ...mxn t 
a1
a2
an
 l   l 
 l 

...
 



 l t   l t 
 l t 
a1 a 2 ...a n
 l 


 l t 
Recognizing that this is the moment generating
function of the gamma distribution with parameters
(l, a1 + a2 +…+ an) we conclude that
W = x1 + x2 + … + xn has a gamma distribution with
parameters (l, a1 + a2 +…+ an).
Therorem
Suppose that x is a random variable having a
gamma distribution with parameters (l,a).
Then W = ax has a gamma distribution with
parameters (l/a, a).
a
Proof:
 l 
mx  t   

 l t 
a
a
l 

 l  
a 
then max  t   mx  at   


 l  at   l  t 
 a 
Special Cases
1. Let X and Y be independent random variables
having a c2 distribution with n1 and n2 degrees of
freedom respectively then X + Y has a c2
distribution with degrees of freedom n1 + n2.
2. Let x1, x2,…, xn, be independent random variables
having a c2 distribution with n1 , n2 ,…, nn degrees
of freedom respectively then x1+ x2 +…+ xn has a
c2 distribution with degrees of freedom n1 +…+ nn.
Both of these properties follow from the fact that a
c2 random variable with n degrees of freedom is a
G random variable with l = ½ and a = n/2.
Recall
If z has a Standard Normal distribution then z2 has a
c2 distribution with 1 degree of freedom.
Thus if z1, z2,…, zn are independent random variables
each having Standard Normal distribution then
U  z12  z22  ...  zn2
has a c2 distribution with n degrees of freedom.
Therorem
Suppose that U1 and U2 are independent random
variables and that U = U1 + U2 Suppose that U1
and U have a c2 distribution with degrees of
freedom n1andn respectively. (n1 < n)
Then U2 has a c2 distribution with degrees of
freedom n2 =n -n1
Proof:
 12 
Now mU1  t    1 
 2 t 
v1
2
 12 
and mU  t    1 
 2 t 
v
2
Also mU t   mU1 t  mU2 t 
Hence mU 2  t  
mU  t 
mU1  t 
 12 
1 
2 t 


v
2
v  v1
2 2
 12 
v1  

1
2
 12 
 2 t 
1 
 2 t 
Q.E.D.
Distribution of the sample
variance
n
s2 
 (x  x )
i 1
i
n 1
2
Properties of the sample variance
n
n
i 1
i 1
n
n
i 1
i 1
2
2
2
(
x

x
)

(
x

a
)

n
(
x

a
)
 i
 i
Proof:
2
2
(
x

x
)

(
x

a

a

x
)
 i
 i
n
  ( xi  a) 2  2( xi  a)( x  a)  ( x  a) 2 
i 1
n
n
  ( xi  a)  2( x  a) ( xi  a)  n( x  a)
2
i 1
i 1
n
  ( xi  a) 2  2n( x  a ) 2  n( x  a ) 2
i 1
n
  ( xi  a )  n( x  a )
2
i 1
2
2
n
n
i 1
i 1
2
2
2
(
x

x
)

(
x

a
)

n
(
x

a
)
 i
 i
Special Cases


  xi 
n
n
n
i 1


2
2
2
2
(
x

x
)

x

nx

x




i
i
i
n
i 1
i 1
i 1
1. Setting a = 0.
Computing formula
n
2
Setting a = .
2.
n
n
i 1
i 1
2
2
2
(
x

x
)

(
x


)

n
(
x


)
 i
 i
or
n
n
i 1
i 1
2
2
2
(
x


)

(
x

x
)

n
(
x


)
 i
 i
Distribution of the sample variance
Let x1, x2, …, xn denote a sample from the
normal distribution with mean  and variance s2.
Let
z1 
x1  
s
,
, zn 
xn  
s
n
Then
z 
2
1
z 
2
n
 x   
i 1
2
i
s2
has a c2 distribution with n degrees of freedom.
Note:
n
2
(
x


)
 i
i 1
s
2
n

2
(
x

x
)
 i
i 1
s
2

n( x   )
2
s2
or U = U2 + U1
n
U
 (x  )
i 1
2
i
s
2
has a c2 distribution with n degrees of freedom.
We also know that x
has normal distribution with mean  and
variance s2/n
Thus
z
x 
s
n
has a Standard Normal distribution and
U1  z 
2
nx  
2
s2
has a c2 distribution with 1 degree of freedom.
If we can show that U1 and U2 are independent
then
n
U2 
2
(
x

x
)
 i
i 1
s
2

(n  1) s
2
s2
has a c2 distribution with n - 1 degrees of freedom.
The final task would be to show that
n
2
(
x

x
)
and x
 i
i 1
are independent
Summary
Let x1, x2, …, xn denote a sample from the
normal distribution with mean  and variance s2.
1. than x has normal distribution with
mean  and variance s2/n
n
2.
U
 n  1 s
s
2
2

 (x  x )
i 1
2
i
s
2
has a c2 distribution with n = n - 1 degrees of
freedom.
The Transformation Method
Theorem
Let X denote a random variable with
probability density function f(x) and U = h(X).
Assume that h(x) is either strictly increasing
(or decreasing) then the probability density of
U is:


1
dh (u )
dx
g  u   f h (u )
 f  x
du
du
1
Proof
Use the distribution function method.
Step 1 Find the distribution function, G(u)
Step 2 Differentiate G (u ) to find the
probability density function g(u)
G  u   P U  u   P  h  X   u 
 P  X  h 1 (u )  h strictly increasing
 


1
 X  h (u )  h strictly decreasing
P




 F h 1 (u )


1
1

F
h
(
u
)



h strictly increasing

h strictly decreasing
hence
g u   G u 

dh  u 
1
 F   h u 

du

1
 F  h 1 u dh  u 
 


du

1
h strictly increasing
h strictly decreasing
or
1
dh
(u )
dx
1
g  u   f h (u )
 f  x
du
du


Example
Suppose that X has a Normal distribution
with mean  and variance s2.
Find the distribution of U = h(x) = eX.
Solution:
2
x 


1
2s 2
f  x 
e
2s
1
dh  u  d ln  u  1
1
h  u   ln  u  and


du
du
u
hence
1
dh
(u )
dx
1
g  u   f h (u )
 f  x
du
du



1 1 
e
2s u
 ln  u    
2s 2
2
for u  0
This distribution is called the log-normal
distribution
log-normal distribution
0.1
0.08
0.06
0.04
0.02
0
0
10
20
30
40
The Transfomation Method
Theorem
(many variables)
Let x1, x2,…, xn denote random variables
with joint probability density function
f(x1, x2,…, xn )
Let u1 = h1(x1, x2,…, xn).
u2 = h2(x1, x2,…, xn).
un = hn(x1, x2,…, xn).
define an invertible transformation from the x’s to the u’s
Then the joint probability density function of
u1, u2,…, un is given by:
g  u1 ,
, un   f  x1 ,
 f  x1 ,
, xn 
d  x1 ,
d  u1 ,
, xn  J
, xn 
, un 
 dx1
 du
 1
d  x1 , , xn 
where J 
 det 
d  u1 , , un 

 dxn
 du1
Jacobian of the transformation
dx1 
dun 



dxn 
dun 
Example
Suppose that x1, x2 are independent with density
functions f1 (x1) and f2(x2)
Find the distribution of
u1 = x1+ x2
u2 = x1 - x2
Solving for x1 and x2 we get the inverse transformation
u1  u2
x1 
2
u1  u2
x2 
2
The Jacobian of the transformation
J
d  x1 , x2 
d  u1 , u2 
1
2
 det 
1
 2
 dx1
 du
1

 det
 dx2
 du
 1
dx1 
du2 

dx2 

du2 
1 
2    1   1    1  1    1
  




1   2  2   2  2 
2

2 
The joint density of x1, x2 is
f(x1, x2) = f1 (x1) f2(x2)
Hence the joint density of u1 and u2 is:
g  u1 , u2   f  x1 , x2  J
 u1  u2   u1  u2  1
 f1 
 f2 

 2   2 2
From
 u1  u2   u1  u2  1
g  u1 , u2   f1 
 f2 

 2   2 2
We can determine the distribution of u1= x1 + x2
g1  u1  

 g  u , u  du
1





2
2
 u1  u2   u1  u2  1
f1 
 f2 
 du2
 2   2 2
u1  u2
u1  u2
dv 1
put v 
then
 u1  v,

2
2
du2 2
Hence
g1  u1  



 u1  u2   u1  u2  1
f1 
 f2 
 du2
 2   2 2


 f  v  f u
1
2
1
 v  dv

This is called the convolution of the two
densities f1 and f2.
Example: The ex-Gaussian distribution
Let X and Y be two independent random
variables such that:
1. X has an exponential distribution with
parameter l.
2. Y has a normal (Gaussian) distribution with
mean  and standard deviation s.
Find the distribution of U = X + Y.
This distribution is used in psychology as a model
for response time to perform a task.
Now
lel x
f1  x   
 0
x0
x0
2
x 


1
2s 2
f2  y  
e
2s
The density of U = X + Y is :.
g u  

 f  v  f  u  v  dv
1
2


  le
0
 lv
1
e
2s
2
u v   


2s 2
dv
or

l
g u  
e

2s 0

2
u v   


l v
l

e

2s 0

2s 2
2
u v     2s 2l v


2s 2

l

e

2s 0
l

e
2s
dv
dv
v2  2 u   v   u     2s 2l v
2
2s 2
2
u  


2s
2

e
0

dv
v 2  2  u    s 2 l  v
2s 2
dv
l

e
2s
or

u  
2s
2
2

e

v 2  2  u    s 2 l  v
2s 2
0
2
l

e
2s
 u   2   u   s 2l  

2s 2
e

v2  2  u    s 2 l  v   u    s 2l 
 u   2   u   s 2l  

2s 2

0
 le
2
2s 2
dv
0
2
 le
dv

1
e
2s
 u   2   u   s 2l 

2s 2
v 2  2  u    s 2l  v   u   s 2l 
2
P V  0
2s 2
2
dv
Where V has a Normal distribution with mean
V  u     s l 
2
and variance s2.
Hence
g u   le

s 2l 
 l  u    

2



    s 2l   u  

1    


2


s




Where (z) is the cdf of the standard Normal
distribution
The ex-Gaussian distribution
0.09
g(u)
0.06
0.03
0
0
10
20
30
Related documents