Download 10.7 Complex Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
10.7 Complex
Numbers
Objective 1
Simplify numbers of the form
where b > 0.
b ,
Slide 10.7- 2
Simplify numbers of the form b , where b > 0.
Imaginary Unit i
The imaginary unit i is defined as
i  1,
where
i 2  1.
That is, i is the principal square root of –1.
Slide 10.7- 3
Simplify numbers of the form b , where b > 0.
b
For any positive real number b,
b  i b.
It is easy to mistake 2i for 2i with the i under the radical. For this reason,
we usually write 2i as i 2, as in the definition of
b .
Slide 10.7- 4
CLASSROOM
EXAMPLE 1
Simplifying Square Roots of Negative Numbers
Write each number as a product of a real number and i.
Solution:
25
 i 25
 5i
 81
 i 81
 9i
7
i 7
44
 i 44
 i 4 11
 2i 11
Slide 10.7- 5
CLASSROOM
EXAMPLE 2
Multiply.
Multiplying Square Roots of Negative Numbers
Solution:
16  25  i 16  i 25
 i  4i 5
8  6
 i2 8  6
 20i 2
 i 2 48
 20  1
 i 2 16  3
 20
6  5
 i 6 i 5
 i2 6  5
 i 8 i 6
 4 3
5  7
i 5 7
 i 35
 (1) 30
  30
Slide 10.7- 6
CLASSROOM
EXAMPLE 3
Dividing Square Roots of Negative Numbers
Divide.
Solution:
80
5
i 80

i 5
40
10
i 40

10
80

5
40
i
10
 16
i 4
4
 2i
Slide 10.7- 7
Objective 2
Recognize subsets of the complex
numbers.
Slide 10.7- 8
Recognize subsets of the complex numbers.
Complex Number
If a and b are real numbers, then any number of the form a + bi is
called a complex number. In the complex number a + bi, the
number a is called the real part and b is called the imaginary part.
Slide 10.7- 9
Recognize subsets of the complex numbers.
For a complex number a + bi, if b = 0, then a + bi = a, which is a real
number.
Thus, the set of real numbers is a subset of the set of complex numbers.
If a = 0 and b ≠ 0, the complex number is said to be a pure imaginary
number.
For example, 3i is a pure imaginary number. A number such as 7 + 2i is a
nonreal complex number.
A complex number written in the form a + bi is in standard form.
Slide 10.7- 10
Recognize subsets of the complex numbers.
The relationships among the various sets of numbers.
Slide 10.7- 11
Objective 3
Add and subtract complex numbers.
Slide 10.7- 12
CLASSROOM
EXAMPLE 4
Add
.
Adding Complex Numbers
Solution:
(1  8i)  (9  3i)  (1  9)  (8  3)i
 8 11i
(3  2i)  (1  3i)  (7  5i)
 [3  1  (7)]  [2  (3)  (5)]i
 9  6i
Slide 10.7- 13
CLASSROOM
EXAMPLE 5
Subtracting Complex Numbers
Subtract.
Solution:
(1  2i )  (4  i)
 (1  4)  (2  1)i
 5  i
(8  5i)  (12  3i)  (8  12)  [5  (3)]i
 (8  12)  (5  3)i
 4  2i
(10  6i)  (10  10i)  [10  (10)]  (6  10)i
 0  4i
 4i
Slide 10.7- 14
Objective 4
Multiply complex numbers.
Slide 10.7- 15
CLASSROOM
EXAMPLE 6
Multiplying Complex Numbers
Multiply.
Solution:
6i (4  3i )
 6i(4)  6i(3i)
 24i  18i 2
 24i  18(1)
 18  24i
Slide 10.7- 16
CLASSROOM
EXAMPLE 6
Multiplying Complex Numbers (cont’d)
Multiply.
Solution:
(6  4i )(2  4i)  6(2)  6(4i)  (4i)(2)  (4i)(4i)
First
Outer
Inner
 12  24i  8i  16i
Last
2
 12  16i  16(1)
 12 16i 16
 28  16i
Slide 10.7- 17
CLASSROOM
EXAMPLE 6
Multiplying Complex Numbers (cont’d)
Multiply.
Solution:
(3  2i)(3  4i)
 3(3)  3(4i)  (2i)(3)  (2i)(4i)
First
Outer
Inner
Last
 9  12i  6i  8i 2
 9  18i  8(1)
 9  18i  8
 1  18i
Slide 10.7- 18
Multiply complex numbers.
The product of a complex number and its conjugate is always a real number.
(a + bi)(a – bi) = a2 – b2( –1)
= a 2 + b2
Slide 10.7- 19
Objective 5
Divide complex numbers.
Slide 10.7- 20
CLASSROOM
EXAMPLE 7
Dividing Complex Numbers
Find the quotient.
Solution:
23  i
3i
(23  i)(3  i)

(3  i)(3  i)
69  23i  3i  1

2
3 1
70  20i

10
10(7  2i )

 7  2i
10
Slide 10.7- 21
CLASSROOM
EXAMPLE 7
Dividing Complex Numbers (cont’d)
Find the quotient.
Solution:
5i
i
(5  i)(i)

i(i)
5i  i 2

2
i
5i  (1)

(1)
5i  1

1
 1  5i
Slide 10.7- 22
Objective 6
Find powers of i.
Slide 10.7- 23
Find powers of i.
Because i2 = –1, we can find greater powers of i, as shown below.
i3 = i · i2 = i · ( –1) = –i
i4 = i2 · i2 = ( –1) · ( –1) = 1
i5 = i · i4 = i · 1 = i
i6 = i2 · i4 = ( –1) · (1) = –1
i7 = i3 · i4 = (i) · (1) = –I
i8 = i4 · i4 = 1 · 1 = 1
Slide 10.7- 24
CLASSROOM
EXAMPLE 8
Simplifying Powers of i
Find each power of i.
Solution:
i
28
 i
i
19
 i i
i
i
9
22

4 7
16
3
1 1
7
 i

4 4
1
1
 9
 8
i
i i
i
1(i )
 2

i  (i ) i
1
 22
i
i
3
 14  (i)  i

1
i 
4 2
i
i

(1)
1
 2
1 i
1

i
i
  i
1
1
1
1
1
 20 2 
 5



1
5
4
i i
i
   (1) 1  (1) 1
Slide 10.7- 25
Related documents