Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometry (4103) Trigonometry “triangle measure” A little bit of review... a The 3 angles from a triangle ALWAYS equal 180o b a + b + c = 180o c Find the total of the other angles a 30◦ Find the total of the other angles a = 90◦ 30◦ Find the total of the other angles Total angles = 180◦ 90◦ + 30◦ + a = 180◦ 120◦ + a = 180◦ a = 180◦ – 120◦ a = 60◦ a = 90◦ 30◦ Equilateral triangle All sides are the same length Equilateral triangle All angles are the same (180o ÷ 3 = 60o) Isosceles triangle Two sides are the same length Isosceles triangle Two angles are the same Scalene triangle No sides are the same length Scalene triangle No angles are the same Right-angled triangle side hypotenuse side Right-angled triangle side opposite to angle A hypotenuse A side adjacent (next to) angle A Right-angled triangle hypotenuse (c) side (a) 90o side (b) Pythagorean Theorem c 2 = a 2 + b2 side (a) hypotenuse (c) side (b) What if you switch a and b? c 2 = a 2 + b2 side (a) hypotenuse (c) side (b) What if you switch a and b? c 2 = a 2 + b2 side (b) hypotenuse (c) side (a) Doesn’t matter, they’re both sides! Right-angled triangle B side adjacent to angle B hypotenuse A side opposite to angle B What is the length of the hypotenuse? c 2 = a 2 + b2 side (a) 3 cm hypotenuse (c) x cm side (b) 4 cm What is the length of the hypotenuse? c2 = a 2 + b 2 side (a) 3 cm hypotenuse (c) x cm side (b) 4 cm x2 = 32 + 42 x2 = 9 + 16 x2 = 25 x2 = 25 x = 5 cm What is the length of the side? c 2 = a 2 + b2 side (a) x cm hypotenuse (c) 10 cm side (b) 5 cm What is the length of the side? c2 = a 2 + b 2 side (a) x cm hypotenuse (c) 10 cm side (b) 5 cm 102 = x2 + 52 100 = x2 + 25 100 – 25 = x2 75 = x2 x2 = 75 x = 8.7 cm Trigonometric ratios sine cosine tangent depend on which angle is used Trigonometric ratios sine cosine tangent depend on which angle is used Sine ratio (SOH) sin A = opposite hypotenuse side opposite to angle A hypotenuse A side adjacent to angle A Sine ratio (SOH) sin B = opposite hypotenuse B side adjacent to angle B hypotenuse A side opposite to angle B Cosine ratio (CAH) cos A = adjacent hypotenuse side opposite to angle A hypotenuse A side adjacent to angle A Cosine ratio (CAH) cos B = adjacent hypotenuse B side adjacent to angle B hypotenuse A side opposite to angle B Tangent ratio (TOA) tan A = opposite adjacent side opposite to angle A hypotenuse A side adjacent to angle A Tangent ratio (TOA) tan B = opposite adjacent B side adjacent to angle B hypotenuse A side opposite to angle B Trigonometric ratios SOH CAH TOA sin θ = opp cos θ = adj tan θ = opp hyp adj hyp Find the lengths of the missing sides and angle (right triangle) B 7 cm 35o A C Find the lengths of the missing sides and angle (right triangle) B 7 cm 35o A 90o C Step 1. List the information given, and what is needed B What we know: mBC = 7 cm A = 35o C = 90o 7 cm 35o A 90o C What we need: mAB = ? mAC = ? B = ? Step 2. Find the missing side AB B hyp 7 cm (opp) 35o A 90o C Look at the triangle from A: mBC = opposite mAB = hypotenuse Step 2. Find the missing side AB B hyp Look at the triangle from A: mBC = opposite mAB = hypotenuse 7 cm (opp) 35o A 90o C ? = opp hyp Step 2. Find the missing side AB B hyp Look at the triangle from A: mBC = opposite mAB = hypotenuse 7 cm (opp) 35o A 90o C sin θ = opp hyp Step 2. Find the missing side AB B hyp 7 cm (opp) 35o A 90o C sin θ = opp hyp sin 35o = opp hyp Step 2. Find the missing side AB B hyp 7 cm (opp) 35o A 90o C sin θ = opp hyp sin 35o = opp hyp 0.574 = 7 cm hyp Step 2. Find the missing side AB B hyp 7 cm (opp) 35o A 90o C sin θ = opp hyp sin 35o = opp hyp 0.574 = 7 cm hyp Step 2. Find the missing side AB sin θ = opp hyp B hyp 7 cm (opp) 35o A 90o C sin 35o = opp hyp 0.574 = 7 cm hyp 0.574 (hyp) = 7 cm Step 2. Find the missing side AB sin θ = opp hyp B hyp 7 cm (opp) 35o A 90o C sin 35o = opp hyp 0.574 = 7 cm hyp 0.574 (hyp) = 7 cm 0.574 0.574 Step 2. Find the missing side AB sin θ = opp hyp B hyp 7 cm (opp) 35o A 90o C sin 35o = opp hyp 0.574 = 7 cm hyp 0.574 (hyp) = 7 cm hyp = 12.2 cm Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C Look at the triangle from A: mBC = opposite mAB = hypotenuse mAC = adjacent Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C Look at the triangle from A: mBC = opposite mAB = hypotenuse mAC = adjacent Since we have two sides, we have a choice of trig ratios! Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C cos θ = adj hyp or tan θ = opp adj Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C cos θ = adj hyp cos 35o = adj hyp Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C cos θ = adj hyp cos 35o = adj hyp 0.819 = adj 12.2 cm Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C cos θ = adj hyp cos 35o = adj hyp 0.819 = adj 12.2 cm Step 3. Find the missing side AC cos θ = adj hyp B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C cos 35o = adj hyp 0.819 = adj 12.2 cm 0.819 (12.2 cm) = adj Step 3. Find the missing side AC cos θ = adj hyp B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C cos 35o = adj hyp 0.819 = adj 12.2 cm 0.819 (12.2 cm) = adj adj = 10 cm Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C tan θ = opp adj tan 35o = opp adj Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C tan θ = opp adj tan 35o = opp adj 0.700 = 7 cm adj Step 3. Find the missing side AC B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C tan θ = opp adj tan 35o = opp adj 0.700 = 7 cm adj Step 3. Find the missing side AC tan θ = opp adj B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C tan 35o = opp adj 0.700 = 7 cm adj 0.700 (adj) = 7 cm Step 3. Find the missing side AC tan θ = opp adj B 12.2 cm (hyp) 7 cm (opp) 35o A 90o (adj) C tan 35o = opp adj 0.700 = 7 cm adj 0.700 (adj) = 7 cm 0.700 0.700 Step 3. Find the missing side AC tan θ = opp adj B 12.2 cm (hyp) 7 cm (opp) 35o A 90o 10 cm (adj) C tan 35o = opp adj 0.700 = 7 cm adj 0.700 (adj) = 7 cm adj = 10 cm Step 4. Find the missing angle B B 12.2 cm (hyp) 7 cm (opp) 35o A 90o 10 cm (adj) C Step 4. Find the missing angle B 180o = A + B + C B 12.2 cm (hyp) 7 cm (opp) 35o A 90o 10 cm (adj) C Step 4. Find the missing angle B 180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) 7 cm (opp) 35o A 90o 10 cm (adj) C Step 4. Find the missing angle B 180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) o = B + 125o 180 7 cm (opp) 35o A 90o 10 cm (adj) C Step 4. Find the missing angle B 180o = A + B + C B 180o = 35o + B + 90o 12.2 cm (hyp) o = B + 125o 180 7 cm (opp) 35o A 90o 10 cm (adj) C B = 180o – 125o Step 4. Find the missing angle B 180o = A + B + C B 12.2 cm (hyp) 180o = 35o + B + 90o 55o o = B + 125o 180 7 cm (opp) 35o A 90o 10 cm (adj) C B = 180o – 125o B = 55o Steps to completing a right triangle Step 1. List the information given, and what is needed Step 2. Find the missing side(s) Step 3. Find the missing angle(s) Find the length of the missing side and angles A 25 cm 19 cm 30o B C Step 1. List the missing information, and what is needed A 25 cm 19 cm 30o B C What we know: mAB = 25 cm mAC = 19 cm B = 30o What we need: mBC = ? A=? C=? Step 2. Create a 90o angle by cutting the triangle in two A 25 cm 19 cm 30o B H C Start at the top angle and continue until it hits the bottom of the triangle at a 90o angle Step 2. Create a 90o angle by cutting the triangle in two Name the point of intersection H A 25 cm 19 cm 30o B H C Step 2. Create a 90o angle by cutting the triangle in two Name the point of intersection H A 25 cm 19 cm 30o B H C Now find the missing information for each new triangle! Step 3. Find the length BH Look at the new triangle from B: mBH = adjacent mAB = hypotenuse A 25 cm 19 cm 30o B H C Step 3. Find the length BH Look at the new triangle from B: mBH = adjacent mAB = hypotenuse A 25 cm 19 cm ? = adj hyp 30o B H C Step 3. Find the length BH Look at the new triangle from B: mBH = adjacent mAB = hypotenuse A 25 cm 19 cm cos θ = adj hyp 30o B H C Step 3. Find the length BH cos θ = adj hyp A 25 cm 19 cm 30o B H C cos 30o = adj hyp Step 3. Find the length BH cos θ = adj hyp A 25 cm 19 cm 30o B H C cos 30o = adj hyp 0.866 = adj 25 cm Step 3. Find the length BH cos θ = adj hyp A 25 cm 19 cm 30o B H C cos 30o = adj hyp 0.866 = adj 25 cm Step 3. Find the length BH cos θ = adj hyp A 25 cm 30o B H cos 30o = adj 19 cm hyp 0.866 = adj 25 cm (0.866)(25 cm) = adj C Step 3. Find the length BH cos θ = adj hyp A 25 cm 30o B 21.7 cm H cos 30o = adj 19 cm hyp 0.866 = adj 25 cm (0.866)(25 cm) = adj C adj = 21.7 cm Step 4. Find the angle A A 25 cm 180o = A + B + H 19 cm 30o B 21.7 cm H C Step 4. Find the angle A A 180o = A + B + H 180o = A + 30o + 90o 25 cm 19 cm 30o B 21.7 cm H C Step 4. Find the angle A A 180o = A + B + H 180o = A + 30o + 90o 25 cm 19 cm 30o B 21.7 cm H C 180o = A + 120o Step 4. Find the angle A A 180o = A + B + H 180o = A + 30o + 90o 25 cm 19 cm 30o B 21.7 cm H C 180o = A + 120o A = 180o – 120o Step 4. Find the angle A A 180o = A + B + H 180o = A + 30o + 90o 60o 25 cm 19 cm 21.7 cm A = 180o – 120o A = 60o 30o B 180o = A + 120o H C Step 5. Find the length AH A 60o 25 cm 19 cm 30o B 21.7 cm H C There are many different ways to find mAH: – Pythagoras – tan A or tan B – cos A – sin B Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 19 cm 30o B 21.7 cm H C Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 19 cm 30o B 21.7 cm H C sin 30o = opp hyp Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 19 cm 30o B 21.7 cm H C sin 30o = opp hyp 0.500 = opp 25 cm Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 19 cm 30o B 21.7 cm H C sin 30o = opp hyp 0.500 = opp 25 cm Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 30o B 21.7 cm H sin 30o = opp 19 cm hyp 0.500 = opp 25 cm (0.500)(25) = opp C Step 5. Find the length AH sin θ = opp hyp A 60o 25 cm 12.5 cm 30o B 21.7 cm H sin 30o = opp 19 cm hyp 0.500 = opp 25 cm (0.500)(25) = opp C hyp = 12.5 cm Step 6. Find the angle C Look at the new triangle from C: mAH = opposite mAC = hypotenuse A 60o 25 cm 19 cm 12.5 cm ? = opp hyp 30o B 21.7 cm H C Step 6. Find the angle C Look at the new triangle from C: mAH = opposite mAC = hypotenuse A 60o 25 cm 19 cm 12.5 cm sin θ = opp hyp 30o B 21.7 cm H C Step 6. Find the angle C sin θ = opp hyp A 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm H C Step 6. Find the angle C sin θ = opp hyp A sin θ = opp hyp 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm H C Step 6. Find the angle C sin θ = opp hyp A sin θ = opp hyp 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm H C sin θ = 12.5 cm 19 cm Step 6. Find the angle C sin θ = opp hyp A sin θ = opp hyp 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm H C sin θ = 12.5 cm 19 cm sin θ = 0.66 Step 6. Find the angle C sin θ = opp hyp A sin θ = opp hyp 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm H C sin θ = 12.5 cm 19 cm sin θ = 0.66 sin-1(0.66) = θ Step 6. Find the angle C sin θ = opp hyp A sin θ = opp hyp 60o 25 cm 19 cm 12.5 cm 41.1o 30o B 21.7 cm H C sin θ = 12.5 cm 19 cm sin θ = 0.66 sin-1(0.66) = θ θ = 41.1o Step 7. Find the length CH A 60o 25 cm 19 cm 12.5 cm 41.1o 30o B 21.7 cm H C There are many different ways to find mCH: – Pythagoras – cos C – tan C Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm 19 cm 12.5 cm 41.1o 30o B 21.7 cm H C Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm cos 41.1o = adj hyp 19 cm 12.5 cm 41.1o 30o B 21.7 cm H C Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm 12.5 cm 41.1o 30o B 21.7 cm cos 41.1o = adj hyp 19 cm 0.754 = adj 19 cm H C Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm 12.5 cm 41.1o 30o B 21.7 cm cos 41.1o = adj hyp 19 cm 0.754 = adj 19 cm H C Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm 12.5 cm 30o B 21.7 cm H cos 41.1o = adj hyp 19 cm 0.754 = adj 19 cm 41.1o 0.754 (19 cm) = adj C Step 7. Find the length CH cos θ = adj hyp A 60o 25 cm 12.5 cm 30o B 21.7 cm cos 41.1o = adj hyp 19 cm 0.754 = adj 19 cm 41.1o 0.754 (19 cm) = adj H 14.3 cm C adj = 14.3 cm Step 8. Find the angle A 180o = A + C + H A 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm 41.1o H 14.3 cm C Step 8. Find the angle A 180o = A + C + H A 180o = A + 41.1o + 90o 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm 41.1o H 14.3 cm C Step 8. Find the angle A 180o = A + C + H A 180o = A + 41.1o + 90o 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm 41.1o H 14.3 cm C 180o = A + 131.1o Step 8. Find the angle A 180o = A + C + H A 180o = A + 41.1o + 90o 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm 41.1o H 14.3 cm C 180o = A + 131.1o A = 180o – 131.1o Step 8. Find the angle A 180o = A + C + H A 48.9o 180o = A + 41.1o + 90o 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm 41.1o H 14.3 cm C 180o = A + 131.1o A = 180o – 131.1o A = 48.9o Step 9. Complete triangle A = 60o + 48.9o = 108.9o 180o = A + B + C A 48.9o 60o 25 cm 19 cm 12.5 cm 30o B 21.7 cm 41.1o H 14.3 cm C Step 9. Complete triangle A = 60o + 48.9o = 108.9o 25 cm 30o B 21.7 cm 180o = A + B + C A 108.9o 180o = 108.9o + 30o + 41.1o 19 cm 41.1o H 14.3 cm C Step 9. Complete triangle A = 60o + 48.9o = 108.9o 25 cm 30o B 21.7 cm 180o = A + B + C A 108.9o 180o = 108.9o + 30o + 41.1o 19 cm 41.1o H 14.3 cm C The angles in the original triangle ABC add up to 180o Step 9. Complete triangle mBC = mBH + mCH A 108.9o 25 cm 30o B 21.7 cm 19 cm 41.1o H 14.3 cm C Step 9. Complete triangle mBC = mBH + mCH A 108.9o 25 cm 30o B 21.7 cm 19 cm 41.1o H 14.3 cm C mBC = 21.7 + 14.3 Step 9. Complete triangle mBC = mBH + mCH A 108.9o 25 cm 19 cm 41.1o 30o B mBC = 21.7 + 14.3 36 cm C mBC = 36 cm Steps to complete a non-right angle triangle Step 1. List the missing information, and what is needed Step 2. Create 90o angles by cutting the triangle in two Step 3. Looking at the first triangle, solve for missing angle(s) and/or side(s) Step 4. Looking at the second triangle, solve for missing angle(s) and/or side(s) Step 5. Put the halves of sides and angles together into the one original triangle So far, there are two ways to solve a right-angled triangle: So far, there are two ways to solve a right-angled triangle: Pythagoras (c2 = a2 + b2) Trigonometric ratios (SOH CAH TOA) Isn’t there another way to solve a non-right angled triangle? Isn’t there another way to solve a non-right angled triangle? Yes! Sin Law and Cos Law Sine Law Uses the sine ratio Sine Law a = b = c sin A sin B sin C Sine Law lengths a = b = c sin A sin B sin C angles Find the length of the missing side and angles A 25 cm 19 cm 30o B C Find the length of the missing side and angles Remember: Capital letters = angles Lower-case letters = sides A c 25 cm b 19 cm 30o B a C Find the length of the missing side and angles angle A ↔ side a Remember: Capital letters = angles Lower-case letters = sides A c 25 cm b 19 cm Angles and sides with the same letters are opposite each other 30o B a C Find the length of the missing side and angles angle B ↔ side b Remember: Capital letters = angles Lower-case letters = sides A c 25 cm b 19 cm Angles and sides with the same letters are opposite each other 30o B a C Find the length of the missing side and angles angle C ↔ side c Remember: Capital letters = angles Lower-case letters = sides A c 25 cm b 19 cm Angles and sides with the same letters are opposite each other 30o B a C Step 1. List the missing information, and what is needed A c 25 cm b 19 cm 30o B a C What we know: mAB = c = 25 cm mAC = b = 19 cm B = 30o What we need: mBC = a = ? A=? C=? Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ We have both angle B and side b A c 25 cm b 19 cm 30o B a C We can use these to fill out the C ‘pair’ Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm b = c sin B sin C A b 19 cm 30o B a C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm b = c sin B sin C 19 cm = 25 cm sin 30o sin C A b 19 cm 30o B a C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm b = c sin B sin C 19 cm = 25 cm sin 30o sin C A b 19 cm 30o B a C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm A b 19 cm 30o B a C b = c sin B sin C 19 cm = 25 cm sin 30o sin C 19 (sin C) = sin 30o (25) Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm A b = c sin B sin C 19 cm = 25 cm sin 30o sin C b 19 (sin C) = sin 30o (25) 19 cm 19 (sin C) = (0.5)(25) 30o B a C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm A b = c sin B sin C 19 cm = 25 cm sin 30o sin C b 19 (sin C) = sin 30o (25) 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 30o B a C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm 30o B a A b = c sin B sin C 19 cm = 25 cm sin 30o sin C b 19 (sin C) = sin 30o (25) 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 19 19 C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm 30o B a A b = c sin B sin C 19 cm = 25 cm sin 30o sin C b 19 (sin C) = sin 30o (25) 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 19 19 sin C = 0.658 C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm 30o B a A b = c sin B sin C 19 cm = 25 cm sin 30o sin C b 19 (sin C) = sin 30o (25) 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 19 19 sin C = 0.658 C sin-1 (0.658) = C Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ a = b = c sin A sin B sin C c 25 cm 30o B a b = c sin B sin C A 19 cm = 25 cm sin 30o sin C b 19 (sin C) = sin 30o (25) 19 cm 19 (sin C) = (0.5)(25) 19 (sin C) = 12.5 19 19 o 41.1 sin C = 0.658 C sin-1 (0.658) = C C = 41.1o Step 3. Find the last angle (A) 180o = A + B + C A c 25 cm b 19 cm 41.1o 30o B a C Step 3. Find the last angle (A) 180o = A + B + C A 180o = A + 30o + 41.1o c 25 cm b 19 cm 41.1o 30o B a C Step 3. Find the last angle (A) 180o = A + B + C A 180o = A + 30o + 41.1o c 25 cm b 19 cm 41.1o 30o B a C 180o = A + 71.1o Step 3. Find the last angle (A) 180o = A + B + C A 180o = A + 30o + 41.1o c 25 cm b 19 cm 180o = A + 71.1o 180o – 71.1o = A 41.1o 30o B a C Step 3. Find the last angle (A) 180o = A + B + C A 108.9o c 25 cm 180o = A + 30o + 41.1o b 19 cm 180o = A + 71.1o 180o – 71.1o = A B A = 108.9o 41.1o 30o a C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm b 19 cm 41.1o 30o B a C Step 4. Find the last ‘pair’ (A) a = b sin A sin B a = b = c sin A sin B sin C A 108.9o c 25 cm b 19 cm 41.1o 30o B a C Step 4. Find the last ‘pair’ (A) a = b sin A sin B a = 19 cm sin 108.9o sin 30o a = b = c sin A sin B sin C A 108.9o c 25 cm b 19 cm 41.1o 30o B a C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm 41.1o 30o B a = b sin A sin B a = 19 cm sin 108.9o sin 30o b a = 19 cm 19 cm 0.946 0.5 a C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm 41.1o 30o B a = b sin A sin B a = 19 cm sin 108.9o sin 30o b a = 19 cm 19 cm 0.946 0.5 a C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm 41.1o 30o B a = b sin A sin B a = 19 cm sin 108.9o sin 30o b a = 19 cm 19 cm 0.946 0.5 a (0.5) = 0.946 (19) a C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm 30o B a a = b sin A sin B a = 19 cm sin 108.9o sin 30o b a = 19 cm 19 cm 0.946 0.5 a (0.5) = 0.946 (19) a (0.5) = 17.97 41.1o C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm 30o B a a = b sin A sin B a = 19 cm sin 108.9o sin 30o b a = 19 cm 19 cm 0.946 0.5 a (0.5) = 0.946 (19) a (0.5) = 17.97 41.1o 0.5 0.5 C Step 4. Find the last ‘pair’ (A) a = b = c sin A sin B sin C A 108.9o c 25 cm 30o B a 36 cm a = b sin A sin B a = 19 cm sin 108.9o sin 30o b a = 19 cm 19 cm 0.946 0.5 a (0.5) = 0.946 (19) a (0.5) = 17.97 41.1o 0.5 0.5 C a = 36 cm Done! A 108.9o c 25 cm b 19 cm 41.1o 30o B a 36 cm C Steps to complete a triangle using Sine Law Step 1. List the missing information, and what is needed Step 2. Find one ‘pair’, and use it to fill in another ‘pair’ Step 3. Find the last angle Step 4. Find the last ‘pair’ Cos Law Uses the cos ratio Also uses ‘pairs’ Looking for a Cos Law other two lengths 2 a = 2 b + 2 c – 2bc(cosA) pair you’re looking for Looking for b Cos Law other two lengths 2 b = 2 a + 2 c – 2ac(cosB) pair you’re looking for Looking for c Cos Law other two lengths 2 c = 2 b + 2 a – 2ab(cosC) pair you’re looking for 3 variations of Cos Law 2 a 2 b 2 c = + – 2bc(cosA) 2 2 2 b = a + c – 2ac(cosB) 2 2 2 c = b + c – 2ab(cosC) Find the length of b A c 25 cm b 30o B a 36 cm C Find the length of b A c 25 cm To use Cos Law, you have to know: - One of the values of the pair you need (angle or length) - The two other lengths b 30o B a 36 cm C Step 1. List the missing information, and what is needed What we know: mAB = c = 25 cm mBC = a = 36 cm B = 30o A c 25 cm b What we need: mAC = b = ? 30o B a 36 cm C Step 2. Choose the variation of Cos Law that you need a2 = b2 + c2 – 2bc(cosA) A b2 = a2 + c2 – 2ac(cosB) c 25 cm c2 = b2 + c2 – 2ab(cosC) b 30o B a 36 cm C Step 2. Choose the variation of Cos Law that you need a2 = b2 + c2 – 2bc(cosA) A b2 = a2 + c2 – 2ac(cosB) c 25 cm c2 = b2 + c2 – 2ab(cosC) b 30o B a 36 cm C Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) b2 = 362 + 252 – 2(36)(25)(0.866) Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) b2 = 362 + 252 – 2(36)(25)(0.866) b2 = 1296 + 625 – 2(36)(25)(0.866) Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) b2 = 362 + 252 – 2(36)(25)(0.866) b2 = 1296 + 625 – 2(36)(25)(0.866) b2 = 1296 + 625 – 1558.8 Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) b2 = 362 + 252 – 2(36)(25)(0.866) b2 = 1296 + 625 – 2(36)(25)(0.866) b2 = 1296 + 625 – 1558.8 b2 = 362.2 Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) b2 = 362 + 252 – 2(36)(25)(0.866) b2 = 1296 + 625 – 2(36)(25)(0.866) b2 = 1296 + 625 – 1558.8 b2 = 362.2 Step 3. Solve the equation b2 = a2 + c2 – 2ac(cosB) b2 = 362 + 252 – 2(36)(25)(cos30o) b2 = 362 + 252 – 2(36)(25)(0.866) b2 = 1296 + 625 – 2(36)(25)(0.866) b2 = 1296 + 625 – 1558.8 b2 = 362.2 b = 19 cm Done! A c 25 cm b 19 cm 30o B a 36 cm C Steps to complete triangles using Cos Law Step 1. List the missing information, and what is needed Step 2. Choose the variation of Cos Law that you need Step 3. Solve the equation How do you know which to use? Use Sin Law if: Use Cos Law if: • Given 2 sides, 1 angle opposite one of the sides • Given 3 sides a a A b • Given 2 angles, 1 side opposite one of the angles B b • Given 1 angle, 2 sides adjacent to that angle a c C c C b Summary of trigonometry Right-angled triangle • If you only have sides --Pythagoras Non-right angled triangle • If you have a pair (a + A) • If you have sides and angles • If you have to fill in a pair (looking for angle or side) – SOH CAH TOA – Sin Law – Cos Law – a2 = b2 + c2 – 2ac(cos A)