Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Econ 313 – Wissink – Fall 2007 PS#6 – XTRAQ - ANSWERS 1. You are given the following information about a monopolist who makes gizmos: the monopolist’s production function x=L1/2 where L is measured in hours; the firm must get a permit to operate and the cost of the permit is $16; the current market wage rate is $1/hour; and market demand is XD = 120 – 2P. a. What are the values for the simple monopoly equilibrium; that is what are xSM, PSM, profitSM , Net Social SurplusSM, Consumers’ SurplusSM, Producer’s SurplusSM and dead-weight-lossSM? b. Graph this solution. [ANSWER] tc(x) = x2+16 atc(x) = x+16/x mc(x) = 2x Demand curve : XD = 120 – 2P P=60-1/2x tr(x) = (60-1/2x)x = 60x-1/2x2 mr(x) = 60 – x Maximize profit : set mr(xSM)=mc(xSM) 60-xSM = 2xSM xSM = 20 PSM = 60-1/2xSM = 50 profitSM = 50*20 – (20*20+16) = 584 $ 90 80 70 B 60 C A Psm 50 40 D 30 20 10 0 -10 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 -20 xmes -30 x NSSSM = area OBCD = 60*24*1/2-20=700 CSSM = area PSMBC = (60-50)*20*1/2=100 PSSM = area OPSMCD = 700-100=600 DWLSM = areaDCA = (50-40)*(24-20)*1/2=20 atc mc demand mr c. Is the monopolist productively efficient? Defend. [ANSWER] No! xSM is not at the minimum of the lratc curve. However, if you want to argue that the rising part of the lratc makes no sense since the firm would replicate beyond xMES then I would accept “yes” as an answer, provided you provided that proviso! d. Is the monopolist allocatively efficient? Defend. [ANSWER] No! x* = 24 maximizes Net Social Surplus. 2. In a diagram using typical cost curves and a linear market demand curve, show how a PRICE CEILING can be successfully used to get a simple monopolist to put more on the market and sell it at a lower price. [ANSWER] $ A mc B PSM C PC E NEWmr F G Dmkt D qSM qC q mr C Suppose P is a price ceiling that the government slaps on the market. A simple monopolist’s new marginal revenue curve is the red line, PCCFD. The monopolist produces qC with the lower price, PC, the price ceiling. Also, consumer surplus increases from PSMAB to PCAC and the dead-weight-loss decreases from GBE to FCE. Note that the efficient price ceiling would be at the price indicated by point E. 3. In a diagram using typical cost curves and a linear market demand curve, show how a PER UNIT TAX ON THE MONOPOLIST’S OUTPUT will alter the profit maximizing quantity and price for simple monopolist. Show how the economic price incidence of the per unit tax is shared (or not) between the buyers and the monopolist. [ANSWER] 2 NEWmc $ C t mc B P SM P E G mkt D t q SM q q mr After a per unit tax, t, is levied on the monopolist’s output, atc, avc, and mc shift up – and mc shifts up by exactly t(the per unit tax). A per unit tax will cause a monopolist to reduce the profit maximizing quantity from qSM to qt and raise price from PSM to Pt for simple monopolist. The profit for the firm decreases since it was maximized before, so by revealed profit analysis, profit must be less at this combination…note the monopolist could have selected this quantity before but did not. The tax is shared since Pt-PSM is less than t. 4. Prove that a monopolist will never choose to operate in the inelastic portion of his demand curve if he is a simple profit maximizing monopolist. [ANSWER] Suppose I claim X* profit maximizes and X* is in the inelastic portion of demand. Now increases P. Then X decreases (due to law of demand): TR increases since D 1 ; TC decreases since cost are an increasing function of output and output(X) decreases; π increases. (π =TR-TC) Therefore, X* could not have maximized profit. QED. 5. In a diagram using typical cost curves and a linear market demand curve, demonstrate that a simple monopolist who is profit maximizing and at the same time earning zero economic profit must be producing less output than is productively efficient. [ANSWER] $ lratc lrmc PMC d xMC mr x 3 Get the profit maximizing output, xMC, by setting mr=mc. But when a simple monopolist (or a monopolistically competitive firm in long run equilibrium) has zero profit, then the lratc must be TANGENT to the downward sloping demand curve, which implies that the minimum of the lratc curve is to the right of, that is larger than, xMC. 6. Assume that the taxi industry in Ithaca satisfies the following set of assumptions: The industry is perfectly competitive. The industry is presently in long-run equilibrium. The industry is an external constant-cost industry. Each taxi driver has a set of "typically" shaped cost curves. In particular this means that short-run supply curve for the individual taxi driver and the industry is typically shaped (due possibly to "dilly-dallying" on the part of taxi drivers). All taxi drivers are the identical with respect to their cost structures. Demand for taxi rides is typically shaped. a. Graph the present long-run equilibrium situation for both a typical taxi driver and the entire taxi industry. [ANSWER] Profit>0 Price S2 S1 D D $ srmc lratc sratc P2 P* D D Q2 Q* Taxi Market Quantity q* q2 Quantity Typical Firm Suppose now that the mayor decides to license taxi drivers and issues a limited number of licenses, less than the number of taxis currently in operation. The licenses are freely given to existing taxi drivers on a random basis. For example they put names into a hat and draw out the lucky drivers to decide who will, and who will not, be given a license. Assume that you must have a license to operate a taxi and the government does not collect a fee for the license. HINT: THE TOTAL NUMBER OF “TAXI-FIRMS” WILL NOW BE LESS. b. Explain and indicate on the graphs for the previous part what will happen to price, quantity, and profit in the short-run and long-run once the licenses have been issued. Be sure to discuss and graphically point out both the effect on the individual taxi driver and the entire taxi market. [ANSWER] see the graphs above. Suppose the number of licenses is N2 which is less than N1, the original number of taxi drivers in the entire market. In the short-run, there are now only N2 taxis. The short run market supply curve shifts to the left from S1 to S2. Price increases from P* to P2. Each tax driver provides rides q2 which is more than q*. Then, each taxi driver has positive profit with price, P2, and new quantity, q2. In the long-run, firms can not enter and profit for the lucky taxi drivers who got a license persists and is positive. We are unable to get back to a long run equilibrium. 4 c. If any taxi driver with a license can sell the license to an ex-taxi driver who did not get a license, what will be the maximum amount the ex-taxi driver will be willing to pay for the license? (I’m not looking for an exact number.) [ANSWER] The maximum amount would be the profit that the taxi driver earns who was lucky and got a license for free. d. What would happen to Ithaca's taxi market if someone purchased all the taxi licenses at once? Would it make sense for someone purchasing all the licenses at once to be willing to pay more than the total number of licenses times your answer to part (c) of this question? Explain. [ANSWER] Yes, since now the taxi monopolist can control and restrict output to drive up (no pun intended) the market price and increase total profit. So, if you could buy all the licenses at once and thereby be a monopolist, then you would have more profit – making you willing to pay more for the entire set of licenses than the sum of all the profit when the drivers act as perfect competitors. But you’d have to buy them all at once, or you would find yourself involved with a hold up game at the very end for the last few people who you try to buy licenses from. 5