Download Chapter 03

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
12
3. Problems in Chapter 3 - Section 3.9
P3.1
(a) Consider an aperture A in a conducting ground plane. The equivalence principle says that two
having the same value within a a given region are equivalent in that region. Consider an ewquivalent
problem to the one shown in the figure above. Suppose thbe original fields E, H exist for z  0 but
there is a null field for z  0 . To support the external field surface currents must occur on z  0 .
In addition place a perfect electric conductor over z  0 , on top of which we place a magnetic
current M s . Further, for z  0 , we specify the same field as for the original problem.
Since the tangential components of the aperture field E a are zero just behind the magnetic
conductor then M s  E  zˆ z 0  E a  zˆ . This is illustrated below
Now image the magnetic currents in the ground plane. Thus
13
Hence the equivalent currents are M s  2E a  ẑ A and J s  0
.
Returning to the original problem, the electric field radiated by an aperture containing fields
E a , H a is
E(r , ,  ) 
jk
4


e  jkR
A R  M   o J  Rˆ Rˆ dS '
where M  E  ẑ A and J  zˆ  H A
M  Ms
and
E(r , ,  ) 
(b)
jk
2
. In the equivalent problem shown above
J  0 . Hence
e  jkR
A R zˆ  E a  Rˆ dS '
.
The distance to the field point P is R  r  r'
. When r  r '
R  r  rˆ  r' . In the amplitude of the integrand a greater degree of approximation is used R  r
and Rˆ  rˆ while in the phase function let R  r  rˆ  r' . Hence
E
jk e  jkr
rˆ  zˆ  N 
2 r
where N 

A
.
E a exp( jkrˆ  r ' ) dS '
.
rˆ  zˆ  N  rˆ  Nzˆ  rˆ  zˆ N where
rˆ  xˆ sin  cos   yˆ sin  sin   zˆ cos
. Therefore
rˆ  N   sin  N x cos   N y sin   and rˆ  zˆ   cos . Now converting from rectangular to
spherical co-ordinates using the relations in Appendix A, we find that
rˆ  zˆ  N   ˆ N x cos   N y sin    ˆ N x sin   N y cos  
Hence
.
14
Er  0
E 
jk e  jkr
N x cos   N y sin  
2 r
E 
jk e  jkr
cos   N x sin   N y cos  
2 r
As given in eqns. 3.26
.
15
P3.2
For a coaxial transmission line terminated in an infinite ground plane, the fields in the aperture due
to the presence of the TEM mode are
E   ˆ
V
1  j z
e
 r ln( b / a) 
and
H
1
o
zˆ  E
where ˆ  xˆ cos   yˆ sin  , V is the voltage between the conductors and  r is the dielectric
constant of the material between the conductors. Assuming that the reflection coefficient at the
aperture is  , the aperture electric field is approximately given by E a  1    Ez 0 . The
radiated field can be calculated using the results of P3.1, the current on the aperture surface is
M s  2 1   E  zˆ z 0
and the field is obtained from the transform function
2V 1   
N
d '  d ' exp  jk ' cos(   ' )xˆ cos  ' yˆ sin  ' .
 r ln( b / a) 0
a
2
b
The integrals over  ' can be completed in closed form my means of the identities
2
cos  '
cos  
 d ' sin  '  exp jZ cos(   ' )  2j J (Z )sin  
1
0
d
J 0 (Z )   J1 (Z )
dx
where J n (Z ) is a Bessel function of order n. Therefore,
16
4j V 1   
Nx  
cos   d ' J 1 ( w sin  )
 r ln( b / a)
a
b

4j V 1   
cos  J 0 ( wb)  J 0 ( wa)
 r ln( b / a)
where w  k sin  . Similarly,
Ny 
4j V 1   
sin  J 0 ( wb)  J 0 ( wa)
 r ln( b / a)
.
The far-zone electric field components are
2V 1    e  jkr
J 0 (wb)  J 0 (wa),
E (r , ,  )  
 r ln( b / a) r
E (r , ,  )  0  E r (r , ,  ) .
This field amplitude is independent of the azimuth direction  due to symmetry of the geometry and
the polarization varies about the z-direction. When   0 and    , along the axis the field goes to
zero. When the transmission line is small in terms of wavelengths, kb, ka  0 as is the case for
conventional coaxial cables then J 0 ( Z )  1  Z 2 / 4 and
2
2
V 1    e  jkr
2 b  a 

k sin   
E (r , ,  ) 
 r ln( b / a) r
 2 
,
which shows the radiated field is maximum and normal to the infinite conducting plate.
Consider the example of a transmission line with a slightly larger dimensions, kb  1 and ka  0.5 ,
filled with a dielectric with  r  2.5 and   0.3 , the radiated field in the far-field is shown below
In 3-D the amplitude is doughnut-shaped.
17
P3.3
Given the aperture field
E a  xˆ Eo exp(  jx) ; x  a ;
Also H a 
1
o
y  b.
zˆ  E a .
The Fourier transform function of the aperture field is
a
b
N x   dx' exp( j 2ux' jx' )  dy' exp( j 2uy' ) .
b
a
The integrals can be evaluated as follows:

b
b
dy' exp( j 2uy' )  2bS (2vb)
a
 dx' exp j(2u   ) x'  2aS (2u   )a.
a
Therefore
N x  4abS (2u   )aS (2vb) and also
Ly 
1
o
Nx
We see that the beam maximum has shifted from u  0 to u   / 2 , v  0 . That is
1

sin  o   / 2 and o  0
  

 2 
ie.  o  sin 1 
.
For example, when ka  4  2a /  , the beam maximum varies with
a, radians
0
/12
/8
/4
/3
a as follows:
o, deg.
0
3.75
5.61
11.32
15.2
Note that the only affect of the phase slope over the aperture field is a shift in the beam maximum,
the radiation pattern remains the same.
18
P3.4
This time the aperture field has a quadratic phase factor
E a  xˆ Eo exp(  jx 2 ) ; x  a ;
where x 2  1 . Also H a 
1
o
y b
zˆ  E a .
The Fourier transform function of the aperture field is
a
b
N x   dx' exp( j 2ux' jx' 2 )  dy' exp( j 2uy' ) .
b
a
The integrals can be evaluated as follows:

b
b
dy' exp( j 2uy' )  2bS (2vb)
 dx' exp  j(2ux'x' )  2aS 2ua  j 
a
2
a
a
a
dx' x' 2 exp( j 2ux' ) .
The last integral is evaluated by repeated use of integration by parts. Finally

a
a
dx' x' 2 exp( j 2ux' )  2a 3 S (2ua) 
a
cos(2ua)  S (2ua)
(u ) 2
a
2
2
 dx' exp( j 2ux' jx' )  2aS (2ua) (1  j a ) 
a
and
j
cos(2ua)  S (2ua) . Finally
2(u ) 2

j
cos(2ua)  S (2ua)
N x (u, v)  4abEo S (2vb)S (2ua) (1  j a 2 ) 
2
2(u )


For moderately large apertures, N x gives the main lobe and the first few sidelobes. Thus in the Eplane (   0,  ), v  0 and

j
cos(2ua)  S (2ua)
N x (u,0)  4abEo S (2ua) (1  j a 2 ) 
2
2(u)


When   0 , there is no phase error then
N x (u,0)  4abEo S (2ua) .
Next consider when u  0 . If   0 then
N x (0,0)  4abEo .
If a 2 is small on axis
.
19


j 2ab

N x (0,0)  Eo 4ab (1  j a 2 )  Lim
cos(2ua)  S (2ua) .
2
u 0 (u )


sin x
x2
x2
For small arguments S ( x) 
and cos x  1 
. Therefore
 1
2
x
6
1
 cos( xa)  S ( x) 
Lim 
 .
2

x 0
3
x


This results in
N x (0,0)  4abEo (1  j
 a2
3
)  4abEo exp(  ja 2 / 3) .
A small quadratic phase produces a phase shift on axis but maximum gain is unaffected.
Next consider the pattern nulls. In the error-free case these occur in the v  0 plane when
S ( 2ua )  0 ie. when u  n / 2a ; n  1, 2,  . In these ‘null’ angles when there is quadratic phase
error
N x (n / 2a,0)   j
ie.
 8a 3b
(1) n Eo .
2
(n)
N x (n / 2a,0)  
8a 3b
Eo .
(n) 2
The approximate power level at the n-th null relative to the peak level at u  0  v is
 2a 2
PDn  
2
 (n)
2

 .

The depth of the first null ( n  1) is calculated from the above formula is:
a2 (radians)
0
/36
/16
/8
/4
Null Depth
(dB)
0.00
-35.05
-28.00
-21.98
-15.96
The row highlighted is the case that was requested.
Finally, consider the first sidelobe level. The peak occurs when S (2ua )  0.2173 ie. -13.26dB
when 2ua  4.494 or u  2.247 / a . At the sidelobe peak
20



N x (2.247 / a, 0)  2abEo 2(0.2173)(1  ja 2 )  j
(0.2167  0.2173)
2
(2.247 / a)


Neglecting the second term in the square braces as it is small
N x (2.247 / a, 0)  4abEo 0.2173(1  ja 2 )
ie.
N x (2.247 / a, 0)  4ab Eo 0.2173 1  (a 2 ) 2
 4ab Eo 0.2173
.
Hence the first sidelobe peak increases only slightly when with small quadratic phase error.
In summary, the main effect on the pattern of a small quadratic phase error is a filling in of the
pattern nulls.
.
21
P3.5
Given the aperture electric field
E a  xˆ Eo exp j( x) ; x  a ;
Also H a 
1
o
y b
zˆ  E a . The approach adopted is a more general one than the previous problems.
The far-field is determined from
a
N x  Eo  dy'  dx' exp  jk sin  ( x' cos   y' sin  )exp  j( x' ) .
b
b
a
Let U  k sin  cos  and V  k sin  sin  then
a
N x  Eo  dy' exp( jVy' )  dx' exp( jUx' ) exp  j( x' )
b
b
a
where

b
b
dy' exp( jVy' )  2bS (Vb) .
Suppose the maximum deviation of (x ) across the aperture is
( x)  ( x)  ( x)  M
;x a
as used by Cheng (1955) where M is a finite number and (x) is the average value. The factor
exp(  j( x)) could be taken outside the integral since its value is constant. Also
exp  j( x)  cos   j sin 
 1
1
2  j 
2
Hence the second integral becomes
 1
2
adx' exp( jUx' ) exp j( x' )  adx' exp( jUx' )1  2    adx' exp( jUx' ) exp(  j)
a
.
The first term becomes
a
a
22
1
 1
2
2
adx' exp( jUx' )1  2    adx' exp( jUx' )  2  adx' exp( jUx' )
a
a
a
 1
2
 2aS (Ua)1   
 2

2
 

 2aS (Ua)1 
M 2 
2


The second integral becomes
a
a
a
a
 dx' exp( jUx' ) exp(  j)   j  dx'  exp( jUx' )  0
Combining all results so far we obtain
 2 2
N x  4abEo S (Ua) S (Vb)1 
M 
2


.
The electric field in the far-zone is
E 
jk e  jkr
(1  cos  ) N x cos 
4 r
and
E  
jk e  jkr
(1  cos  ) N x sin  .
4 r
The gain on axis is
Gmax 
4r 2 Pr
PT
where PT 
1
Pr 
2 o
2
 k  1
  2 Nx
 2  r
1
ie. Pr 
2 o
Therefore
1
2
Eo 4ab and
2 o
2
 k  Eo


2
 2  r
2
2
4ab 2 1  
2
2
M2 .
.
23
2
G max
2
4r 2  k  E o
2 2
2
4ab  1  M


2 o  2  r 2
2

1
2
E o 4ab
2 o

k2

4ab 1  
2
2
M2 
4

2
.
4ab 1  
2
2
M2
This compares with a uniformily illuminated rectangular aperture
Go 
4A

2

4
2
4ab .
Therefore
Gmax  Go 1 
2
2
M2 ,
which gives an upper bound on the gain. Clearly when   0
Gmax  Go as required.
24
P3.6
Once again as in P3.5, assume a uniform aperture field. This time simply
E a  x̂ Eo
and H a 
1
o
zˆ  E a . At this stage we could use the results of P3.5 and set   0 and obtain the
required result for a rectangular aperture. However, proceeding with the problem, the far-field is
determined from
a
N x  Eo  d '  d '  ' exp  jw ' cos(   ' )
2
0
a
where w  k sin  and a  D / 2 . Then
a
N x  2E o  d '  ' J 0 ( w ' )
a
 J ( wa) 
 (a ) E o 2 0

 ( wa) 
.
2
The far-fields are obtained from
E 
jk e  jkr
(1  cos  ) N x cos 
4 r
and
jk e  jkr
E  
(1  cos  ) N x sin 
4 r
.
2
On axis   0 and N x  (a ) Eo and therefore
E 
jka2 e  jkr
Eo
2
r
; 0
(x-direction)
The radiated power is
Pr 
1
2 o
 k 2a4  2
 2  Eo .
 4r 
The total input power with uniform illumination is
PT 
1
2
E o (a 2 ) .
2 o
The maximum gain is defined as
25
4r 2 Pr
Go 
PT
1  k 2a4 

 Eo
2 o  4r 2 
1
2
E o (a 2 )
2 o
4r 2

 (ka) 2
That is
Go  (ka) 2
 2a 


  
 D 


  
2
2
as was required.
26
P3.7
A circular aperture of radius a in an infinite ground plane radiates fields
jk e  jkr
E 
N x cos 
2 r
and
E  
jk e  jkr
cos  N x sin 
2 r
where
 J ( wa) 
N x  (a 2 ) Eo 2 0

 ( wa) 
in which w  k sin  . Also the radiated magnetic field is
H
1
o
rˆ  E .
The same aperture in free-space radiates the electric field
E 
jk e  jkr
(1  cos  ) N x cos 
4 r
and
E  
jk e  jkr
(1  cos  ) N x sin 
4 r
.
27
with all variables the same as in the infinite ground plane case. The main differences in the
expressions for the field components are as follows:
Field component
Free-space
E
 1  cos  


2


 1  cos  


2


E
Ground plane
1
cos
These factors on the field are sometimes referred to as Huygen’s factors or obliquity factors.
28
P3.8
3.27
K
D/2
The field radiated by a uniformly illuminated rectangular aperture of width D is from eqn.
dx' exp( j 2ux' )  KDS (uD)
D / 2
where S ( x)  sin( x) / x and K is a constant for fixed azimuth angle. In this instance let   0 and
u  k sin  .
If the aperture has a cosine taper over D , which goes to zero at the edge of the aperture, by eqn.
3.28 the field dependence is
2D
 x' 
dx' cos  exp( j 2ux' )  K
C (uD)
D / 2

D
K
D/2


where C ( x)  cos( x) / 1  (2 x /  ) 2 .
In the case of a uniformly illuminated circular aperture of diameter D , the transform for the field is
(eqn. 3.29)
2
K  d '
0
D/2
 d ' exp  jk sin   ' cos(   ' )  2K
0
D/2
 d ' J
0
(k sin   ' )
0
D
 K  
2
2
.
 J 0 ( wD / 2) 
2 ( wD / 2) 


The aim of this problem is to compare the half-power beamwidth and the first sidelobe level in one
plane for the three cases, namely uniform rectangular, cosine-taper on rectangular and uniform
circular. This can be done through evaluating each of the functions S (x ) , C (x ) and 2 J 0 ( x) / x . The
following results are obtained as listed in the table below.
Aperture type
Rectangular uniform illum.
Half HPBW
0.44

D

Rectangular cosine illum.
0.6
Circular - uniform
illum.
0.52
D

D
1st sidelobe level
 13.2dB
 23dB
 17.5dB
Location of
sidelobe
1.44
1.89
1.64

D

D

D
1st null
1 .0
1 .5

D

D
1.22

D
29
P3.9
Assume the link antennas have cirular apertures and are uniformly illuminated. Also the aperture
field is x-directed. Therefore, E a  xˆ and H a  yˆ /  o .
2
 D  J ( w)
N x  2   1
w
2
2  D  J 1 ( w)
Ly 
 
o  2  w
2
where w  k sin  .
In the far-field
jk e  jkr
E 
N x cos    o cos  L y cos 
4 r


.
jk e  jkr
 D  J ( w)

(1  cos  ) cos  2   1
4 r
w
2
2
Similarly
E 
jk e  jkr
 cos  N x sin    o L y sin 
4 r


.
jk e  jkr
 D  J ( w)

(1  cos  ) sin  2   1
4 r
w
2
2
The total radiated power per unit solid angle is
2
2
  D  2   J 1 ( w)  2
1
1  k 
2
2
Pr 
E 


 (1  cos  ) 2    
2 o
2 o  4r 
  2    w 
.
A study of the geometry of the path shows that the impact of curvature of the ray-path will be small.
30
The cosine law gives
d 2  Re  h1   Re  h2   2Re  h1 Re  h2 cos
2
2
Assume h1  h2 and Re  h1 , h2
d 2  2 Re2  2 Re2 cos   2 Re2 (1  cos  )
 4 Re2 sin 2

2
That is
sin

2

d
2 Re
.
Also
Re  h3  Re  h1  cos
Therefore
h3  h1 cos

2
 h1 1  sin 2

2
 d
 h1 1  
 2 Re



2

2
.
.
31
That is h3  h1 . For the specified geometry shown below
 70 

  0.2674
15000


 b  tan 1 
. This is now substituted into the normalized power pattern
of the circular aperture with diameter D . That is
 J ( ) 
Pr  (1  cos  )  1

  
2
2
where  
D
sin 

. A variety of aperture diameters were tried when    b . It has been found
that an aperture with diameter of  148 would ensure that the beam out to 6dB would be clear of
blockage. The calculations are given below.
Beamwidth Circular Aperture
Enter diam eter):
(
D
Enter test angle (deg):
P(  )
P0
(1
cos (  ) ) 

P 6 
20 log
180
P0
P6( 6 )  6.027
h


15000tan
6 
180
 h  70.006
6
0.2674
J1(   D  sin (  .0001) )
(   D  sin (  .0001) )
P( 0 )
P6( 6 )
148
32
P3.10
In the Fresnel region, the radiated electric field is given by
jk e  jkR  jk \ 2 / R
rˆ  M s  dS '
E
e
4 R A
where R  r  r' and
rˆ  M s  2rˆ  zˆ  E a 
 2 cos  E a
.
Assume E a  x̂Eo where Eo is a constant. Therefore
a
2
jk e  jkR 2
d '  d '  ' 2 cos  E o e  jk ' / R

0
4 R 0
 jkR
a
j
e
 xˆ E o
2  d '  ' cos  exp(  jk ' 2 / R)
0

R
 ka 2   jkR
e
 xˆ 2 j E o cos  sin 
 4R 
E  xˆ
The radiated power per unit solid angle is
Pr 
 ka 2
1
1
2
E 
4 R 2 E o2 sin 2 
2 o
2 o
 4R
E2
 o
2 o
 A   sin  
 

    
2
where   ka 2 / 4 R and A  a 2 .



33
The total radiated power is
PT 
E o2
A
2 o
and therefore the gain at R is
4A  sin  
G 2 

   
4A
2
 2 S ( )
2
.

The gain in the far-field is Go 
4A

2
. Therefore, G  Go S ( ) .
2
The relative gain is required at R  2a 2 /  . At this distance G  0.81Go and at four times this
distance at R  8a 2 /  , G  0.99 Go .
34
P3.11
Suppose the aperture is subdivided into N annuli A  A1  A2   AN . At the radial limits of the
n-th annulus the path lengths are separated by  / 2 . Thus
rn  R  n / 2 at the lower rim of the annulus and rn1  R  (n  1) / 2 at the upper edge. The
radiated electric field at P is
E
jk e  jkR
F dS '
4 A R
where F is a generalised vector current which is uniform over the aperture.
Let R  r  r' where
R  r  r'

R  n / 22   ' 2
 n 
 R  nR      ' 2
 2 
2
2
n   ' 
 R 1
 
R R
 R
 '2
R

n
2
Thus for the n-th annulus
2
.
35
En 
jk e  jkR
exp( jkn / 2)  exp( jk ' 2 / R)F dS '
4 R
An
.
Let the n-th integral be given by
 exp( jk '
2
/ R)F dS '  vˆ Fn  Fn 1  / 2
An
where v̂ is a field direction and Fn and Fn1 are contributions from the rims of the annulus. Then
the contribution from An is
En 
jk e  jkR
vˆ exp( jkn / 2) Fn  Fn 1  / 2 .
4 R
The total field at P is this
N
E   En 
n 1
jk e  jkR N
vˆ  (1) n Fn  Fn 1  / 2
4 R
n 1
jk e  jkR

vˆ  F1  (1) N FN 1 / 2
4 R


.
Therefore, the contributions to the integral cancel except for the first and the last. Clearly, the field
decays as 1 / R with increasing distance. However, the amplitude goes through a series of maxima
and minima because as R increases, N decreases . A description of this phenomena with Fresenel
zones can be found in the references (Silver, 1946), (Born & Wolf, 1959).
36
P3.12
Define the following functions:

E-field pattern function A( ) occurs at   0 and

E-field pattern function B ( ) occurs at   90 .
A suitable field function is E(r , ,  ) 


e  jkr ˆ
 A( ) cos   ˆ B( ) sin  .
r
Now the co-polar direction is defined p  ˆ cos   ˆ sin  and the cross-polar direction
q  ˆ sin   ˆ cos  . Therefore
E p  E  pˆ 
e  jkr
A( ) cos 2   B( ) sin 2 
r

e  jkr
 A( )  B( )sin  cos 
E q  E  qˆ 
r

and
.
When    / 4 , cos   1 / 2 . Therefore
e  jkr 1
 A( )  B( )
Ep 
r 2
Eq 
e  jkr 1
 A( )  B( )
r 2
and
.
That is the co-polar pattern is the average of the E- and H-plane patterns and the cross-polar
patterns is obtained from the difference of the two principal plane patterns.
37
P3.13
Consider the integral
I (h)   f ( z ) e jh ( z ) dz
C
where C is a contour in the complex z-plane, h is a large positive parameter and
( z )   cos(  z )
. Assume there a single stationary point of the exponential at z  z s
Expand  (z ) and f (z ) in power series at this point. First consider  (z ) expanded as
( z )  ( z s ) 
' ( z s )
' ' ( z s )
(z  zs ) 
(z  zs )2  
1!
2!
d ( z )
, etc. The stationary point occurs at ' ( z )  0 . Thus,
dz
' ( z )  sin(   z )  0 . That is z  z s   .
where  ' ( z ) 
At this point we can find ( z s )  1 and ' ' ( z s )  1 . Let us now make a change of variable so
that s  z  z s . Therefore, the phase function can be approximated as
1
 ( s)  1  s 2
2
Note that
.
ds
 1 and also the change of variable will be used in the integral. In addition, the
dz
contour is varied to along the real axis around the stationary point. Thus

I ( h)   f ( s  z s )

where G ( s )  f ( s  z s )

dz jh ( s )
e
ds   G ( s) e jh ( s ) ds .

ds
dz
 f (s  z s ) .
ds
Expand G (s ) in a power series also about s  0 . Thus
G( s)  G ( 0) (0) 
G (1) (0)
G ( 2) (0) 2
s
s 
1!
2!
where G ( n ) (0)  d n G ( s ) / ds n | s 0
I ( h) ~ e
 jh
. Therefore

G ( n ) (0) n
 h 
s exp  j s 2 
 ds 
n!
 2 
n 0

.
We now make use of the following identity (Felsen & Marcuvitz, 1973, p. 384)
38




ds s n exp  s 2

 (n  1) / 2
  ( n 1) / 2 ; n even


 0 ;
n odd
.
Therefore
G ( 2 n ) (0) (2n  1) / 2
( 2 n 1) / 2
n  0 ( 2n) ! 
h
 j 
2


I (h) ~ e  jh 
.
We re-express the following as
1..3.5....(2n  1)
(2n  1)!!
where
(2n  1) / 2  n  12   12 
 
n
2
2n
n!! n.(n  2)!!
and
1
h

 j 
2


( 2 n 1) / 2
1
  j / 2 h 
e

2

( 2 n 1) / 2
 e j ( n 1 / 2 ) / 2
(2) ( n 1 / 2 )

h ( n 1 / 2)
2 j / 4 2 n e jn / 2
e
h
hn
so
that
I ( h) ~

e  jh
2 e
h
e  jh

n 0
2 e
where a n 
G ( 2 n ) (0) 2 n e jn / 2 (2n  1)!!

hn
2n
n  0 ( 2n) !

an
h
h
j / 4
j / 4
n
G ( 2 n ) (0) jn / 2
e
(2n  1)!!
( 2 n) !
.
G ( 0)  G(0)  f ( ) and therefore a0  2 e j / 4 f ( ) . To obtain higher-order terms, we follow
Felsen & Marcuvitz (1973, p. 431). Let G ( s )  f ( z ) w( s ) where w( s ) 
G (s ) results in
G (1) (s)  f ' ( z) w(0) 2  f ( z )w(1) (0)
G ( 2) (s)  f ' ' ( z ) w(0) 3  3 f ' ( z ) w(0)w(1) (0)  f ( z )w( 2) (0) .
By means of L’Hôpital’s rule
w(0) 
2
 (zs )
( 2)
dz
. Taking derivatives of
ds
39
2  ( 3) ( z s )
w (0) 
3  ( 2) ( z ) 2
s
(1)
2
(1)

  ( 4) ( z s )
 ( 3) ( z s )
3 
2
 w (0) 

4
2
(1)
w (0)  

w
(
0
)

w
(
0
)
w
(
0
)





( 2)
w(0)  2 
4
 ( z s )  4!




( 2)
As a result
G( s)  2 f ( z )
and
1


G ( 2) ( s )  2 2  f ( )  f ' ' ( )
4


Therefore
a0  2 e j / 4 f ( )
and
1


a1  2e j / 2  f ( )  f ' ' ( ) 
4


.
Finally, to second –order, the integral is asymptotically given by
I (h) ~ e  jh
2j
h

j 
1

 f ( )  2h  f ' ' ( )  4 f ( ) 



.
.
40
P3.14
Assume a uniformly illuminated ature with M s  2 nˆ  xˆE o  and J s  0 .
The electric field radiated in the near-field by this aperture is given by
E


jk e  jkR ˆ
R  M s dS '
4 A R
where R  r  r' with
r'  xˆ ' cos  ' yˆ ' sin  '
r  r xˆ sin  cos   yˆ sin  sin    zˆr cos  .
, z' 0 and
Thus
R  r  r'
 xˆ r sin  cos    ' cos  '  yˆ r sin  sin    ' sin  '  zˆr cos  
R̂ 
.
R
R

R r  r'
Rˆ  M s  2 Rˆ   yˆE o 

2E o
 xˆr cos   zˆ r sin  cos    ' cos  ' 
r  r'
.
The x-directed component of the far-field will be evaluated. This is
Ex  
jk
cos 
2

2
0
a
d '  d '  ' r
0
exp(  jkR)
r  r'
2
.
In this example 2a  50 . The radiated field given by this component is evaluated at (a) r  10 ;
(b) r  100 ; and (c) r  5,000 . The far-field distance is Ro  2 D 2 /  . This corresponds to the
41
distance Ro  2 D 2 /   5,000 . Plots of the radiation patterns at the three distances (a) to (c) are
shown below.
42
P3.15
The triangular aperture field distribution in the x-direction and uniform in the y-direction results in
the aperture field
 2

E a  xˆ  x E1  E o   E o 
 a

;x 
a
2
.
Assume M s  2 nˆ  E a and J s  0 . In that case by eqns. 3.26 the far-fields are given by
E 
jk e  jkr
N x cos   N y sin 
2 r
E 
jk e  jkr
cos   N x sin   N y cos  where
2 r



and

N   Ea ( x' , y' ) exp( jk sin  ( x' cos   y' sin  )) dx' dy'
A
,
which is evaluated at z' 0 . In this case N y  0 and
Nx  
a/2
a / 2
 2

dy '  x E1  Eo   Eo  exp( jw( x' cos   y ' sin  ))
b / 2
 a

dx 
b/2
where w  k sin  . The integral with respect to y’ is given by
b/2
1
b / 2 dy' exp( jwy' sin  )  jw sin  exp( jw sin  ) .
b / 2
b/2
43
That is
 b

dy ' exp( jwy' sin  )  bS  w sin  
b / 2
 2


b/2
where S ( x)  sin( x) / x . Thus
 b
 a/2
 2

N x  bS  w sin    dx'  x' E1  Eo   Eo  exp( jwx' cos  ) .

a
/
2
 2

 a

Consider the first term under the integral ie.

a/2
dx' x' exp( jKx' )  
a / 2
a/2
0
dx' x' exp( jKx' )  
0
a / 2
dx' x' exp( jKx' ) .
The integral has a general form namely
 dx x exp( x ) 
exp( x )
2
x  1
.
Therefore
a/2

a/2
0
exp( jKx' )
 jKx'1
dx' x' exp( jKx' ) 
( jK ) 2
0
.
 a
 a
exp  jK 
exp  jK 
 2 a 
 2  1

jK
2
( K ) 2
( K 2 )
Similarly
a/2
exp( jKx' )
 jKx'1
dx
'
x
'
exp(
jKx
'
)

a / 2
( jK ) 2
0
0
a
a


exp   jK 
exp   jK 
1
2 a
2




  
2
2
jK
( K )
( K )
 2
.
Therefore

a/2
dx' x' exp( jKx' ) 
a / 2
That is
a   a
a  1

exp  jK   exp   jK   2

2( jK )   2 
2  K

  a
a  2

exp  jK 2   exp   jK 2   K 2



 
44

a/2
dx' x' exp( jKx' ) 
a / 2
a2
2
2
 a 2
 a 2 a
S  K   2 cos K   2 
2
 2 K
 2 K
 a 2
S K   2
 2 K
  a 
cos K 2   1
 
 
a2  a  4
 a
 S  K   2 sin 2  K 
2  2 K
 4
2
a2   a  1  a  
 S  K   S  K  
2   2  2  4  
Therefore
2
  a
 b
 
 1  a
 
 a

N x  ab S w sin   E1  Eo  S  w cos    S  w cos     Eo S  w cos   .
 2
 
 2  4
 
 2

  2
The results for two special cases:
(a) When E1  E o the illumination is uniform and
 b

 a

N x  ab S  w sin   Eo S  w cos   which was obtained previously.
 2

 2

(b) When E1  0 the illumination at the edge goes to zero
 b
E
N x  ab S  w sin   o
 2
 2
 a

S  w cos  
 4

2
From these transform functions we evaluate the far-field from
jk e  jkr
E 
N x cos 
2 r
and
E  
jk e  jkr
cos  N x sin 
2 r
.
For example, consider a 2 x2 aperture with uniform and triangular illumination. The edge
illumination of the latter is -20dB. The radiation patterns in the E- and H-planes for uniform and
triangular illuminations are shown below.
Uniform illumination case ( E1  1):
45
2.5
0
10
20
EEdB(  PII )
EHdB(  PII ) 30
40
50
60 60
0
0
20
40
60
80
100
90
60
80
100
90

Triangular illumination case ( E1  0.1 ).
2.5
0
10
20
EEdB(  PII )
EHdB(  PII ) 30
40
50
60 60
0
0
20
40

Related documents