Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Complex Numbers 1. C = set of complex numbers = { x + iy : x, y , i 1 } z = x + iy ; x = Re(z) , real part of z ; y = Im(z) , imaginary part of z z = iy -- purely imaginary numbers 2. For any n , 1, i , i 2 1 , i 3 i , i 4 1 , ...... 3. Operations on C : z1 a bi , z2 c di (i) (ii) (iii) (iv) (v) Equality + – x / 4. (C, +) is an commutative (abelian) group. (C \{0}, * ) is an commutative group. 5. z a bi , Properties: (i) (ii) (iii) (iv) (v) (vi) conjugate of z = z = a – bi 6. Agrand diagram: -- Cartesian system -- Geometrical Rep. -- > z = x +iy ~ P(x, y) where P is the affix of z 7. Polar form: z = x +iy = r (cos i sin ) r = modulus of z In general, ; θ = argument (amplitude) of z arg z + 2k . 8. Multiplication and Division of z1 , z2 etc . 9. Representation of sum, difference, product and quotient : P1 ~ z1 r1 (cos1 i sin 1 ) ; P2 ~ z2 r2 (cos 2 i sin 2 ) 10. Properties of modulus and argument : (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 11. Exponential form : Denote ei cos i sin ; Then e i cos i sin Euler’s formulas: 12. De Moivre’s theorem for integral exponents: ( c os i s i n )n c o sn i s i nn Pf: (Use of MI) 13. De Moivre’s theorem for rational exponents: p p p ( c os i s i n ) c o s i s i n q q q 14. Applications: c cos , z s sin , z c is , z c is 1 1 , zn z zn (i) (ii) cos nθ = sin nθ = tan nθ = (iii) eg. Find an expression for tan 7θ in terms of θ . Hence prove that the roots of x3 21x 2 35 x 7 0 are tan 2 7 Deduce , tan 2 sec 4 7 2 3 , t a2 n . 7 7 sec 4 2 3 sec 4 416 . 7 7 Eg. Express cos7θ as a polynomial in cosθ and deduce sec 2 14 sec 2 3 5 sec 2 8 . 14 14 4 eg. Evaluate cos sin 5 7 d 0 More properties: For any n (iv) (v) (vi) (vii) 15. Roots of Unity: zn 1 cos 0 i sin 0 cos 2k i sin 2k ,k z= The n distinct roots of the equation are 1, λ , where λ = Observing from the Argand diagrams, some roots of unity are in conjugate pairs. For odd and even n , z n 1 eg. Cube roots of unity z3 = 1 Geometrical Representation : they are points (Pk, k = 0,1, …,n,) on the circumference of a circle of unit radius’ having center at origin, such that P0 =(1,0) and P0OPk Variations : 2k . n zn = -1 eg. Find z if z3 = -1 . k z 1 eg. Show that if n , , k =1,2,..,n-1 1 , then z = i cot n z 1 n eg. Solve ( z 1) n z n 0 , n . Show that Re(z) = -0.5 for any root z of the equation. 16. (A) Roots of Complex Numbers If z n r (cos i sin ) …….. (*) r > 0 , n , then z = (B) Factorization of x 2 n 2a n x n cos n a n x 2 n 2a n x n cos n a n =0 Start at Therefore xn = n 1 Eventually, x 2 n 2a n x n cos n a n = ( x 2 2ax cos( k 0 2k ) a2 ) n (C) Special cases: a) Put a =1 , θ = 0 , ( x n 1) 2 b) Put a = 1 , n , ( x n 1)2 c) Put a = 1, divided both sides by xn , 2 (cos n cos n ) eg. With 0 n n 1 , show sin n 2n 1 sin( k 0 k ). n Eg. Let Pk , k =0, 1,…,n-1 be the vertices of a regular n-gon inscribed in a circle, with radius r and center at O. If P is a point such that POP0 , show n 1 that PP k r 2 n 2r n (OP ) n cos n OP 2 n . k 0 17. Geometry of Complex Numbers: Pk affix of zk (i) (ii) z1 z2 P1P2 = distance between P1 & P2 . arg (z1 – z2 ) = angle of turn from OX towards P2 P1 (a) anti-clockwise direction (b) clockwise direction (iii) arg( towards (iv) arg( z – z ) > 0 arg ( z – z ) < 0 z1 z2 ) represents the angle of turn from P2 P3 z3 z 2 P2 P1 3 points P1, P2, P3 are collinear eqv arg( eqv (v) ( ( z1 z2 ) 0 or z3 z 2 z1 z2 ) , z3 z 2 z1 z2 ) i , for \ {0} , then P2 P1 P2 P3 . z3 z 2 (vi) P1, P2, P3 ,P4 are 4 distinct points representing z1 , z2, z3, z4 . ( z z )( z z ) (a) If P1, P2, P3 ,P4 are concyclic, then 1 3 2 4 k , k 0 . ( z2 z3 )( z1 z4 ) (b) If ( z1 z3 )( z2 z4 ) , then P1, P2, P3 ,P4 are either concyclic or ( z2 z3 )( z1 z4 ) collinear. Worked examples: 1. (a) Prove ΔP1P2P3 is equilateral iff z1 z2 z3 z1z2 z2 z3 z3 z1 2 2 2 (b) Show that the roots of the equation z 3 6 z 2 12 z 5 0 are the vertices of an equilateral triangle in the Argand diagram. 2. Let , show that if t is any root of the equation z n cos z n 1 cos(n 1) ...... z c o s 1 , then 1 . 2 | t | 3. (a) Prove that if the z’s are any complex numbers and λ is positive, then | z1 z2 |2 (1 ) | z1 |2 (1 1 ) | z2 |2 . Under what condition does the sign of the equality hold ? (b) Prove also that, if the a’s are positive numbers such that Then 4. Let z 1 1 ..... 1 , a1 an | z1 z2 .... zn |2 a1 | z1 |2 ... an | zn |2 . 1 cos i sin , 1 cos i sin (a) Find the modulus and argument of z when 0 . (b) What are the modulus and argument when 2 ? 5. In the Argand diagram, PQR is an equilateral triangle of which the circumcentre is at the origin. If P represents the complex number z1 2 i , Find the complex number represented by Q and R . 6. The vertices P, Q, R of an isosceles triangle whose equal sides are PQ and PR represent the complex numbers z1 , z2 , z3 respectively and the angle QPR is α . (a) Show that ( z1 z2 ) 2 ( z2 z3 ) 2 2( z1 z2 )( z1 z3 ) cos . (b) Deduce that 2 2 2 z1 z2 z3 z1z2 z2 z3 z3 z1 iff ΔABC is equilateral. 7. Let P, Q, R, S represent the complex numbers (a) If arg( z1 z2 )=arg( z3 z4 ) , show that z1, z2 , z3 , z4 respectively. z1 z2 is real . z3 z 4 z1 ikz2 , where k is any non-zero real number. 1 ik Show that, ΔPQR is a right-angled triangle. (b) If z3 8. Let p and q be non-zero, distinct complex numbers such that | p – q | =| p + q | (a) Show that p q pq 0 . (b) Let O, P, Q be 3 points representing 0, p and q respectively. By considering the p argument of , or otherwise show that OP ⊥ OQ . q