Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Complex Numbers
1. C = set of complex numbers
= { x + iy :
x, y , i 1 }
z = x + iy ; x = Re(z) , real part of z
; y = Im(z) , imaginary part of z
z = iy -- purely imaginary numbers
2. For any n , 1, i , i 2 1 , i 3 i , i 4 1 , ......
3. Operations on C :
z1 a bi , z2 c di
(i)
(ii)
(iii)
(iv)
(v)
Equality
+
–
x
/
4. (C, +) is an commutative (abelian) group.
(C \{0}, * ) is an commutative group.
5. z a bi ,
Properties:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
conjugate of z = z = a – bi
6. Agrand diagram: -- Cartesian system -- Geometrical Rep.
-- > z = x +iy ~ P(x, y) where P is the affix of z
7. Polar form:
z = x +iy = r (cos i sin )
r = modulus of z
In general,
;
θ = argument (amplitude) of z
arg z + 2k .
8. Multiplication and Division of z1 , z2
etc .
9. Representation of sum, difference, product and quotient :
P1 ~ z1 r1 (cos1 i sin 1 ) ; P2 ~ z2 r2 (cos 2 i sin 2 )
10. Properties of modulus and argument :
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
11. Exponential form :
Denote ei cos i sin ;
Then
e i cos i sin
Euler’s formulas:
12. De Moivre’s theorem for integral exponents:
( c os i s i n )n c o sn i s i nn
Pf: (Use of MI)
13. De Moivre’s theorem for rational exponents:
p
p
p
( c os i s i n ) c o s i s i n
q
q
q
14. Applications:
c cos ,
z
s sin , z c is , z c is
1
1
, zn
z
zn
(i)
(ii) cos nθ =
sin nθ =
tan nθ =
(iii)
eg. Find an expression for tan 7θ in terms of θ .
Hence prove that the roots of x3 21x 2 35 x 7 0 are
tan 2
7
Deduce
, tan 2
sec 4
7
2
3
, t a2 n
.
7
7
sec 4
2
3
sec 4
416 .
7
7
Eg. Express cos7θ as a polynomial in cosθ and deduce
sec 2
14
sec 2
3
5
sec 2
8 .
14
14
4
eg. Evaluate
cos sin
5
7
d
0
More properties: For any n
(iv)
(v)
(vi)
(vii)
15. Roots of Unity:
zn
1 cos 0 i sin 0
cos 2k i sin 2k
,k
z=
The n distinct roots of the equation are 1, λ ,
where λ =
Observing from the Argand diagrams, some roots of unity are in conjugate pairs.
For odd and even n ,
z n 1
eg. Cube roots of unity z3 = 1
Geometrical Representation :
they are points (Pk, k = 0,1, …,n,) on the circumference of a circle of unit
radius’ having center at origin, such that P0 =(1,0) and P0OPk
Variations :
2k
.
n
zn = -1
eg. Find z if z3 = -1 .
k
z 1
eg. Show that if n ,
, k =1,2,..,n-1
1 , then z = i cot
n
z 1
n
eg. Solve ( z 1) n z n 0 , n .
Show that Re(z) = -0.5 for any root z of the equation.
16. (A) Roots of Complex Numbers
If z n r (cos i sin ) …….. (*)
r > 0 , n ,
then z =
(B) Factorization of x 2 n 2a n x n cos n a n
x 2 n 2a n x n cos n a n =0
Start at
Therefore xn =
n 1
Eventually, x 2 n 2a n x n cos n a n = ( x 2 2ax cos(
k 0
2k
) a2 )
n
(C) Special cases:
a) Put a =1 , θ = 0 ,
( x n 1) 2
b) Put a = 1 ,
n
,
( x n 1)2
c) Put a = 1, divided both sides by xn ,
2 (cos n cos n )
eg. With 0
n
n 1
, show sin n 2n 1 sin(
k 0
k
).
n
Eg. Let Pk , k =0, 1,…,n-1 be the vertices of a regular n-gon inscribed in a circle,
with radius r and center at O. If P is a point such that POP0 , show
n 1
that
PP
k
r 2 n 2r n (OP ) n cos n OP 2 n .
k 0
17. Geometry of Complex Numbers:
Pk affix of zk
(i)
(ii)
z1 z2 P1P2 = distance between P1 & P2 .
arg (z1 – z2 ) = angle of turn from OX towards P2 P1
(a) anti-clockwise direction
(b) clockwise direction
(iii)
arg(
towards
(iv)
arg( z – z ) > 0
arg ( z – z ) < 0
z1 z2
) represents the angle of turn from P2 P3
z3 z 2
P2 P1
3 points P1, P2, P3 are collinear
eqv arg(
eqv
(v)
(
(
z1 z2
) 0 or
z3 z 2
z1 z2
) ,
z3 z 2
z1 z2
) i , for \ {0} , then P2 P1 P2 P3 .
z3 z 2
(vi) P1, P2, P3 ,P4 are 4 distinct points representing z1 , z2, z3, z4 .
( z z )( z z )
(a) If P1, P2, P3 ,P4 are concyclic, then 1 3 2 4 k , k 0 .
( z2 z3 )( z1 z4 )
(b) If
( z1 z3 )( z2 z4 )
, then P1, P2, P3 ,P4 are either concyclic or
( z2 z3 )( z1 z4 )
collinear.
Worked examples:
1. (a) Prove ΔP1P2P3 is equilateral iff z1 z2 z3 z1z2 z2 z3 z3 z1
2
2
2
(b) Show that the roots of the equation z 3 6 z 2 12 z 5 0 are the vertices of an
equilateral triangle in the Argand diagram.
2.
Let , show that if t is any root of the equation
z n cos z n 1 cos(n 1) ...... z c o s 1 , then
1
.
2
| t |
3. (a) Prove that if the z’s are any complex numbers and λ is positive, then
| z1 z2 |2 (1 ) | z1 |2 (1
1
) | z2 |2 .
Under what condition does the sign of the equality hold ?
(b) Prove also that, if the a’s are positive numbers such that
Then
4. Let
z
1
1
.....
1 ,
a1
an
| z1 z2 .... zn |2 a1 | z1 |2 ... an | zn |2 .
1 cos i sin
,
1 cos i sin
(a) Find the modulus and argument of z when 0 .
(b) What are the modulus and argument when 2 ?
5. In the Argand diagram, PQR is an equilateral triangle of which the circumcentre is at
the origin. If P represents the complex number z1 2 i ,
Find the complex number represented by Q and R .
6. The vertices P, Q, R of an isosceles triangle whose equal sides are PQ and PR
represent the complex numbers z1 , z2 , z3 respectively and the angle QPR is α .
(a) Show that ( z1 z2 ) 2 ( z2 z3 ) 2 2( z1 z2 )( z1 z3 ) cos .
(b) Deduce that
2
2
2
z1 z2 z3 z1z2 z2 z3 z3 z1 iff ΔABC is equilateral.
7. Let P, Q, R, S represent the complex numbers
(a) If arg( z1 z2 )=arg( z3 z4 ) , show that
z1, z2 , z3 , z4 respectively.
z1 z2
is real .
z3 z 4
z1 ikz2
, where k is any non-zero real number.
1 ik
Show that, ΔPQR is a right-angled triangle.
(b) If z3
8. Let
p and q
be non-zero, distinct complex numbers such that | p – q | =| p + q |
(a) Show that p q pq 0 .
(b) Let O, P, Q be 3 points representing 0, p and q respectively. By considering the
p
argument of
, or otherwise show that OP ⊥ OQ .
q