Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name: Date: Advanced Math Complex Numbers – Chapter 2.5 Solve each of the following for x. Decide whether each solution is real rational, real irrational, or imaginary. 1. x 2 - 2x + 1 = 0 2. x 2 + 3x + 2 = 0 3. x 2 + 3x - 2 = 0 4. x2 - x - 1 = 0 5. x 2 - 25 = 0 6. x2 - 9 = 0 7. x 2 + 25 = 0 8. x2 + 9 = 0 1 Name: Date: Advanced Math Imaginary Numbers Defined Examples Powers of i Complex Numbers a + bi Real Numbers Imaginary Numbers Pure Imaginary Numbers 2 Name: Date: Advanced Math Operations with Complex Numbers Addition Subtraction Multiplication Division Complex Conjugates ( z ) 3 Name: Date: Advanced Math Imaginary Numbers and the Powers of i For problems 1-20, simplify and express your answer in terms of i. 1. i 5 2. i 7 3. i 55 4. i 25 5. i 62 6. i 74 7. i 300 8. i 180 9. i 0 10. i -2 11. i -7 12. i -25 13. i -38 14. i -54 15. - 16 16. - 25 17. - 18 18. - 48 19. -7 20. -3 4 Name: Date: Advanced Math Practice Simplify each expression 1. - 4 + - 16 + - 1 -1 - 9 3. 4. - 12 5. 6. -3 7. (4 - 3i ) + (- 6 + 8i ) 9. 4(3 + 5i ) - 2(2 - 6i ) 11. (6 - i )(6 + i ) ( 2. )( 13. 5 + i 5 5 - i 5 15. (8 + 3i )(2 - 5i ) - 49 + - 9 + - 36 -2 -5 - 25 - 50 8. (7 - 8i ) - (6 + 2i ) 10. 1 2 (7 - 2i ) + (5 - 5i ) 6 3 12. (7 + 3i )(7 - 3i ) ) 14. ( 3 + 4i 2 )( 3 - 4i 2 ) 16. (5 - 2i )(- 1 + 3i ) 5 Name: Date: 2 17. (4 - 5i ) Write each expression in the form a + bi 1 19. 2 + 5i 21. 23. 25. 5+i 5-i 3+i 2 Advanced Math 2 18. (4 + 7i ) 20. 1 4 - 3i 22. 3 - 2i 3 + 2i 2+i 5 7-i 2 24. 5 i i 2 + 2i 3 26. i 3-i 5 27. i + i 2 + i 3 + i 4 + i 5 28. i 46 + i 47 29. i -3 30. i -6 6 Name: Date: 31. i -35 Advanced Math 32. (i n ) 4 33. Find real number x and y such that (2 x + y)+ (3 - 5x)i = 1 - 7i . 34. Find real number x and y such that (3x - 4 y)+ (6x + 2 y)i = 5i . 35. Show that the sum of a + bi and its conjugate is a real number. 36. Show that the product a + bi and its conjugate is a nonnegative real number. 37a. How could you show that 79 is a square root of 6421 without using a calculator? 37b. How could you show that 3 – i is a square root of 8 - 6i? 38. Show that 4-3i is a square root of 7-24i. 7