Download Tutorial 2 Solution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Tutorial II
1. Evaluate the following discrete-time convolution sums:
(i) y[n] = u[n+3] * u[n-3]
(ii) 3nu[-n+3] * u[n-2]
Tutorial II
EKT 230 Signals & Systems
Tutorial II
EKT 230 Signals & Systems
(iii) y[n] = (1/4)n u[n] * u[n+2]
for n+2 < 0, n < -2
y[n] = 0
for n+2 >= 0, n >= -2
k

1
y[n]     u[k ].u[n  k  2]
k    4 
n2
1
  
k 0  4 
k
n  2 1
1
1  
4

1
1
4
Tutorial II
Tutorial II
EKT 230 Signals & Systems
n
4   1   1 
 1     
3   4   64 
Thus,
 4   1  n  1 
 1
y[n]   3   4   64 , n  2



0, n  2

2. Evaluate the convolution sum for a system with the input signal, x[n] and impulse
response, h[n] as in Figure 1. Draw the response y[n]. Use graphical and cross
multiplication methods.
Cross multiplication method
x[n]
h[n]
1
2
3
-1
-1
-2
-3
-1
-1
-2
-3
2
2
4
6
1
1
2
3
1
1
2
3
Ans : y[n] = [-1 -3 -3 2 9 5 3]
Tutorial II
Tutorial II
EKT 230 Signals & Systems
h[-k]
x[k]
1
0
n=0
2
1
1
3
2
3
4
5
h[0-k]
1
-2
2
-1
0
-1
2
1
-3
1
1
-1
y[0] = -1
-3
-2
-1 0
-1
n=1
1
-1
y[1] = -2-1
= -3
h[1-k]
1
-3
2
1
-2
-1 0
1
-1
n=2
y[2] = -3-2+2
= -3
h[2-k]
1
-3
n=3
-1
2
1
-2
-1 0
1
-1
h[3-k]
1
-3
1
-2
2
-1 0
1
-1
n=4
-1
h[4-k]
1
-3
-2
1
y[4] = 6+2+1
=9
2
-1 0
-1
Tutorial II
y[3] = -3+4+1
=2
-1
1
-1
Tutorial II
EKT 230 Signals & Systems
h[k]
x[k]
1
0
n=5
2
1
3
2
3
4
6
-3
2
1
-2
-1 0
-1
y[5] = 3+2
=5
1
-1
h[6-k]
y[6] = 3
1
-3
2
1
-2
-1 0
1
-1
n=7
-1
y[7] = 0
h[7-k]
1
-3
-2
1
2
-1 0
-1
y[n]=[-1 -3 -3 2 9 5 3]
Tutorial II
7
h[5-k]
1
n=6
5
1
-1
Tutorial II
EKT 230 Signals & Systems
3. Compute the convolution y[n] = x[n] * h[n] of the following signals. Draw the output
signal, y[n].
¼ for n = 0
½ for n = 1
¾ for n = 2
x[n] =
1
0
for n = 3
elsewhere
h[n] =
1
1
0
1
1
0
for n = 2
for n = 3
for n = 4
for n = 5
for n = 6
elsewhere
y[n] = x[n] * h[n]

=
 x[k ]h[n  k ]
k  
= x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + x[3]h[n-3]
= (1/4)h[n] + (1/2)h[n-1] + (3/4)h[n-2] + h[n-3]
Thus,
y[2] = ¼
y[3] = ¼ + ½ = ¾
y[4] = ½ + ¾ = 5/4
y[5] = ¼ + ¾ + 1 = 2
y[6] = ¼ + ½ + 1 = 7/4
y[7] = ½ + ¾ = 5/4
y[8] = ¾ + 1 = 7/4
y[9] = 1
y[10] = 0
Tutorial II
Tutorial II
EKT 230 Signals & Systems
2
y[n]
7/4
5/4
7/4
5/4
1
3/4
1/4
Or
0
1
2
3
4
5
6
7
8
9
10
x[n]
h[n]
¼
½
¾
1
1
¼
½
¾
1
1
¼
½
¾
1
0
0
0
0
0
1
¼
½
¾
1
1
¼
½
¾
1
y[n] = [ ¼ ¾ 5/4 2 7/4 5/4 7/4 1]
n=2
4. . A linear time invariant system has an impulse response, h(t) and input signal, x(t). Use
convolution to find the response, y(t) for following signal:

Flip.
Tutorial II
Tutorial II

For t < 1,

For 1=< t < 2,
EKT 230 Signals & Systems
y (t )  0
t 1
y (t )   (2)e ( ) d
0
 2e ( )

t 1
0
 2e (t 1)  2
For 2=< t < 3,
t 2
y (t ) 
 ( 2) e
 ( )
d 
 (2)e
 ( )
d
t 2
0
 2e
t 1
 ( ) t  2
1
 2e ( )
t
 2e ( t  2 )  2e (1)  2e ( t )  2e ( 2 )
2
 4e ( t  2 )  2e ( t 1)  2

For 3=< t < 4,
t 2
y (t ) 
 ( )
 ( 2) e d 
t 3
  2e ( )
t 2
t 3
2
 ( 2 ) e
 ( )
 2e ( )
2
t 2
 4 e  ( t  2 )  2 e  ( t  3 )  2
Tutorial II
d
t 2
 2 e  ( t  2 )  2 e  ( t  3 )  2 e  ( 2 )  2 e  ( t  2 )
Tutorial II

EKT 230 Signals & Systems
For 4=< t < 5,
2
y (t ) 
 ( 2) e
 ( )
d
t 3
  2e ( )

For 5 < t,
2
t 3
 2e ( 2 )  2e ( t 3)
y (t )  0
0


 2  2e (t 1)

(t  2 )
 2e (t 1)  2
  4e
y (t )  
(t  2 )
 2e (t 3)  2e  2
 4e

2e (t 3)  2e  2


0
t 1
1 t  2
2t 3
3t 4
4t 5
t 5
5. A linear time invariant system has an impulse response, h(t) and input signal, x(t).
Use convolution to find the response, y(t) for following signals:
x(t )  cos(t )u (t  1)  u (t  3) 
h(t )  u (t )
Convolution, y(t) = x(t)*h(t)
Tutorial II
Tutorial II

For t < -1, y(t) = 0.

For -1 =< t<0
EKT 230 Signals & Systems
t
y (t )   (1) cos( )d
1


For -1 =< t<0
Tutorial II
sin(  )

sin( t )


t

1
sin( t )


sin(  )

Tutorial II
EKT 230 Signals & Systems
3
y (t )   (1) cos( )d
1

sin(  )

3

1
sin( 3 )

0
 sin( t )

, 1  t  1
y (t )   
 0,
otherwise
6. Evaluate the following convolution integral:
m(t) = y(t) * z(t)
Tutorial II

sin(  )

Tutorial II
Tutorial II
EKT 230 Signals & Systems
Related documents